Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci Res ; 102(5): e25337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680084

RESUMO

Hepatic encephalopathy (HE) is defined as decline in neurological function during chronic liver disease (CLD). Alcohol is a major etiological factor in the pathogenesis of fibrosis/cirrhosis and has also been documented to directly impact the brain. However, the role of alcohol in the development of HE in CLD remains unclear. Here, we investigated the impact of excessive alcohol administration on neurological deterioration in rats with CLD. Starting day 7 post-BDL surgery, rats were administered alcohol twice daily (51% v/v ethanol, 3 g/kg, via gavage) for 4 weeks. Motor coordination was assessed weekly using rotarod and anxiety-like behavior was evaluated with open field and elevated plus maze at 5 weeks. Upon sacrifice, brains were collected for western blot and immunohistochemical analyses to investigate neuronal integrity and oxidative stress status. Alcohol worsened motor coordination performance and increased anxiety-like behavior in BDL rats. Impairments were associated with decreased neuronal markers of NeuN and SMI311, increased apoptotic markers of cleaved/pro-caspase-3 and Bax/Bcl2, increased necroptosis markers of pRIP3 and pMLKL, decreased total antioxidant capacity (TAC), and increased 4-hydroxynonenal (4-HNE)modified proteins in the cerebellum of BDL-alcohol rats when compared to respective controls. Immunofluorescence confirmed the colocalization of cleaved caspase-3 and pMLKL in the granular neurons of the cerebellum of BDL-alcohol rats. Excessive alcohol consumption exacerbates HE which leads to associated apoptotic and necroptotic neuronal loss in the cerebellum of BDL-alcohol rats. Additionally, higher levels of 4-HNE and decreased TAC in the cerebellum of BDL-alcohol rats suggest oxidative stress is the triggering factor of apoptotic and necroptotic neuronal loss/injury.


Assuntos
Etanol , Encefalopatia Hepática , Neurônios , Estresse Oxidativo , Animais , Masculino , Encefalopatia Hepática/patologia , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/metabolismo , Etanol/toxicidade , Etanol/efeitos adversos , Ratos , Neurônios/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Morte Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Ansiedade/etiologia
2.
Neurochem Res ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36635437

RESUMO

The incidence of chronic liver disease is on the rise. One of the primary causes of hospital admissions for patients with cirrhosis is hepatic encephalopathy (HE), a debilitating neurological complication. HE is defined as a reversible syndrome, yet there is growing evidence stating that, under certain conditions, HE is associated with permanent neuronal injury and irreversibility. The pathophysiology of HE primarily implicates a strong role for hyperammonemia, but it is believed other pathogenic factors are involved. The fibrotic scarring of the liver during the progression of chronic liver disease (cirrhosis) consequently leads to increased hepatic resistance and circulatory anomalies characterized by portal hypertension, hyperdynamic circulatory state and systemic hypotension. The possible repercussions of these circulatory anomalies on brain perfusion, including impaired cerebral blood flow (CBF) autoregulation, could be implicated in the development of HE and/or permanent brain injury. Furthermore, hypotensive insults incurring during gastrointestinal bleed, infection, or liver transplantation may also trigger or exacerbate brain dysfunction and cell damage. This review will focus on the role of hypotension in the onset of HE as well as in the occurrence of neuronal cell loss in cirrhosis.

3.
Neurochem Res ; 46(10): 2612-2625, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34129161

RESUMO

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.


Assuntos
Encefalopatia Hepática/etiologia , Encefalopatia Hepática/fisiopatologia , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Progressão da Doença , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/cirurgia , Humanos , Transplante de Fígado , Neurônios/metabolismo , Complicações Cognitivas Pós-Operatórias
4.
Brain ; 142(7): e39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145451

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Epilepsia/prevenção & controle , Glutationa/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Contagem de Células , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/complicações , Proteína HMGB1/sangue , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Estado Epiléptico/prevenção & controle , Sulfóxidos
5.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575153

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Epilepsia/tratamento farmacológico , Domínios HMG-Box/efeitos dos fármacos , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biossíntese , Hipocampo/metabolismo , Isotiocianatos/farmacologia , Masculino , Degeneração Neural/dietoterapia , Neurônios/metabolismo , Ratos , Sulfóxidos
6.
J Alzheimers Dis Rep ; 6(1): 663-675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506484

RESUMO

Background: Tooth loss is closely associated with Alzheimer's disease (AD). Previously, we reported that tooth loss induced memory impairment in amyloid precursor protein knock-in mice by decreasing neuronal activity and synaptic protein levels and increasing glial activation, neuroinflammation, and pyramidal neuronal cell loss without altering amyloid-ß levels in the hippocampus. However, the effects of tooth loss in young wild-type mice have not been explored yet. Objective: We investigated the effects of tooth loss on memory impairment, neuronal activity, synaptic protein levels, glial activation, and pyramidal neuronal cell loss in young wild-type mice. Methods: Two-month-old wild-type mice were randomly divided into control and tooth loss groups. In the tooth loss group, maxillary molar teeth on both sides were extracted, whereas no teeth were extracted in the control group. Two months after tooth extraction, we performed a novel object recognition test to evaluate memory function. Glial activation, neuronal activity, synaptic protein levels, and the number of pyramidal neurons were evaluated using immunofluorescence staining, immunohistochemistry, and western blotting. Results: The tooth loss group exhibited memory impairment and decreased neuronal activity and the levels of synaptic proteins in both the hippocampus and cortex. Moreover, tooth loss increased the activation of phosphorylated c-Jun N-terminal kinase (JNK), heat shock protein 90 (HSP90), and glial activation and reduced the number of pyramidal neurons in the hippocampus. Conclusion: Tooth loss in the young wild-type mice will attenuate neuronal activity, decrease synaptic protein levels, and induce pyramidal neuronal loss, and eventually lead to memory impairment.

7.
Exp Neurol ; 357: 114196, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931122

RESUMO

Traumatic brain injury (TBI) is an overlooked cause of morbidity, which was shown to accelerate inflammation, oxidative stress, and neuronal cell loss and is associated with spatial learning and memory impairments and some psychiatric disturbances in older adults. However, there is no effective treatment in order to offer a favorable outcome encompassing a good recovery after TBI in older adults. Hence, the present study aimed to investigate the histological and neurobehavioral effects of Allopurinol (ALL) in older rats that received repeated TBI (rTBI). For this purpose, a weight-drop rTBI model was used on old male Wistar rats. Rats received 5 repeated TBI/sham injuries 24 h apart and were treated with saline or Allopurinol 100 mg/kg, i.p. each time. They were randomly assigned to three groups: control group (no injury); rTBI group (received 5 rTBI and treated with saline); rTBI+ALL group (received 5 rTBI and treated with Allopurinol). Then, half of the animals from each group were sacrificed on day 6 and the remaining animals were assessed with Open field, Elevated plus maze and Morris Water Maze test. Basic neurological tasks were evaluated with neurological assessment protocol every other day until after the 19th day from the last injury. Brain sections were processed for neuronal cell count in the hippocampus (CA1), dentate gyrus (DG), and prefrontal cortex (PC). Also, an immunohistochemical assay was performed to determine NeuN, iNOS, and TNFα levels in the brain regions. The number of neurons was markedly reduced in CA1, GD, and PC in rats receiving saline compared to those receiving allopurinol treatment. Immunohistochemical analysis showed marked induction of iNOS and TNFα expression in the brain tissues which were reduced after allopurinol at 6 and 19 days post-injury. Also, ALL-treated rats demonstrated a remarkable induce in NeuN expression, indicating a reduction in rTBI-induced neuronal cell death. In neurobehavioral analyses, time spent in closed arms, in the corner of the open field, swimming latency, and distance were impaired in injured rats; however, all of them were significantly improved by allopurinol therapy. To sum up, this study demonstrated that ALL may mitigate rTBI-induced damage in aged rats, which suggests ALL as a potential therapeutic strategy for the treatment of recurrent TBI.


Assuntos
Alopurinol , Lesões Encefálicas Traumáticas , Alopurinol/farmacologia , Alopurinol/uso terapêutico , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia
8.
Oman J Ophthalmol ; 12(1): 31-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787532

RESUMO

BACKGROUND: To analyze changes over a 3-year period in ganglion cell complex (GCC) thickness in individuals with type 1 diabetes mellitus (T1DM) using spectral-domain optical coherence tomography (Optovue, Fremont, CA, USA). METHODS: Thirty-seven individuals from "Friends for Life Conference" with T1DM and a 3-year history of GCC thickness measurements were included in the study. Data analysis using SPSS 22 and Excel StatPlus was completed to note the subgroups that had a significant change. RESULTS: Significant decreases were noted in the following subgroups with slope in parenthesis. Overall: GCC superior thickness OD (-0.48)Male: GCC thickness OD (-0.86), GCC superior thickness OD (-0.735)Body mass index (BMI) 25.0-29.9: GCC thickness OD (-0.48), GCC superior thickness OS (-0.915), GCC inferior thickness OD (-0.43)Ages 10-20 years: GCC superior thickness OD (-0.635)Duration of diabetes 10-20 years: GCC thickness OD (-1.055), GCC superior thickness OD (-0.99). CONCLUSION: GCC loss was noted in individuals who were males, those with BMIs of 25.0-29.9, and those who had diabetes for 10-20 years. Ganglion cell loss was also noted before the presence of any diabetic retinopathy, suggesting onset of neuronal loss before any vasculature changes.

9.
Neuropeptides ; 49: 1-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464888

RESUMO

Dopaminergic neuronal loss in Parkinson's disease (PD) results from oxidative stress, neuroinflammation and excitotoxicity. Because erythropoietin (EPO) has been shown to have antioxidant, anti-inflammatory and neuroprotective effects in many previous studies, present study was designed to evaluate the effect of EPO on rotenone-induced dopaminergic neuronal loss. The rats in which PD was induced by stereotaxical infusion of rotenone showed increased MDA and TNF-alpha levels and decreased HVA levels. On the other hand, EPO treatment resulted in markedly decreased MDA and TNF-alpha levels and increased HVA levels. EPO treatment in rotenone-infusion group resulted in improvement of striatal neurodegeneration and a significant increase in decreased total number of neurons and immunohistochemical TH positive neurons. Results of the present study demonstrate the neuroprotective, anti-inflammatory and antioxidant effects of EPO in a rotenone-induced neurodegenerative animal model.


Assuntos
Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Eritropoetina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Malondialdeído/análise , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Rotenona , Fator de Necrose Tumoral alfa/análise , Tirosina 3-Mono-Oxigenase/análise
10.
Phytomedicine ; 22(1): 86-93, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25636876

RESUMO

Decoctions of Ficus plathyphylla are used in Nigeria's folk medicine to manage epilepsy for many years and their efficacies are widely acclaimed among the rural communities of Northern Nigeria. In this study, we examined the ameliorative effects of the standardized methanol extract of Ficus platyphylla (FP) stem bark on seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. The (35)S-GTPγS, glutamate and γ-aminobutyric acid receptors binding properties of the extract were also evaluated. Male CD-1 mice were kindled with an initial subeffective dose of pentylenetetrazole (PTZ, 37.5mg/kg, i.p.) for a total of 13 convulsant injections and the treatment groups concurrently received FP (100 and 200mg/kg). Control animals received the same number of saline injections. Twenty-four h after kindling completion the animals' learning performance was tested in a two-way shuttle-box. The animals were challenged with another subeffective dose of PTZ (32.5mg/kg, i.p.) on day 7 after kindling completion. Animals were sacrificed a day after the challenged experiment and the brains were processed for histological investigation. FP ameliorates seizure severity, cognitive deficits and neuronal cell loss in PTZ kindled mice. Components of the extract showed affinity for GABAergic and glutamatergic receptors. Glutamate release was diminished and the (35)S-GTPγS binding assay revealed no intrinsic activity at glutamatergic receptors. Our results revealed that FP contains psychoactive secondary metabolites with anticonvulsant properties, thus supporting the isolation and development of the biologically active components of this medicinal plant as antiepileptic agents.


Assuntos
Anticonvulsivantes/farmacologia , Ficus/química , Excitação Neurológica/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Extratos Vegetais/farmacologia , Convulsões/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Guanosina 5'-O-(3-Tiotrifosfato) , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Pentilenotetrazol , Ratos , Receptores de GABA/metabolismo , Receptores de Glutamato/metabolismo
11.
Expert Opin Drug Saf ; 14(4): 583-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645535

RESUMO

INTRODUCTION: In the epilepsy therapeutic arena, there is urgent need for developing novel antiepileptogenesis treatments that offer a way to prevent the onset or the progression of the disease. Such treatments are still lacking, and their development requires a deep understanding of the mechanisms underlying the disease pathogenesis, in order to target them using appropriate drugs with timely interventions. AREAS COVERED: Preclinical research highlighted glial cells in seizure-prone areas as key contributors to neuronal circuit hyperexcitability resulting in seizures. Microglia and astrocytes activated by epileptogenic insults increase their synthesis and release of pro-inflammatory molecules, thus contributing to the generation of neuroinflammation. This is now considered an established hallmark of epileptogenic foci in various forms of pharmaco-resistant epilepsies. Studies done in experimental models of non-genetic forms of epilepsy demonstrated that specific inflammatory molecules are involved in seizures, cell loss and co-morbidities. EXPERT OPINION: Emerging findings highlight that specific inflammatory molecules are potential targets for drug intervention for preventing or arresting epileptogenesis. These drugs, by interfering with mechanisms implicated in disease development, may represent disease-modifying treatments. Clinical translation of anti-inflammatory intervention may take advantage of drugs already used in clinical practice for peripheral or other CNS disorders with a pathogenic neuroinflammatory component.


Assuntos
Anti-Inflamatórios/uso terapêutico , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anticonvulsivantes/farmacologia , Astrócitos/metabolismo , Desenho de Fármacos , Resistência a Medicamentos , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Humanos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Microglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA