Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.716
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 1-15, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126416

RESUMO

I have been a scientific grasshopper throughout my career, moving from question to question within the domain of lupus. This has proven to be immensely gratifying. Scientific exploration is endlessly fascinating, and succeeding in studies you care about with colleagues and trainees leads to strong and lasting bonds. Science isn't easy; being a woman in science presents challenges, but the drive to understand a disease remains strong.


Assuntos
Escolha da Profissão , Lúpus Eritematoso Sistêmico , Feminino , Humanos , Pesquisa Biomédica
2.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32610082

RESUMO

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Córtex Pré-Frontal/embriologia , Telencéfalo/embriologia , Animais , Transtorno Autístico/genética , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Eucromatina/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Ontologia Genética , Predisposição Genética para Doença , Idade Gestacional , Humanos , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos , Mutação Puntual , Córtex Pré-Frontal/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise Espaço-Temporal , Telencéfalo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929901

RESUMO

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Assuntos
Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Animais , Encéfalo , Córtex Cerebral , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra/genética
4.
Annu Rev Cell Dev Biol ; 34: 471-493, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296392

RESUMO

The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans.


Assuntos
Caderinas/genética , Comunicação Celular/genética , Neurônios/citologia , Receptores de Superfície Celular/genética , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Adesão Celular/genética , Humanos , Neuritos/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética
5.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
6.
Annu Rev Pharmacol Toxicol ; 64: 313-338, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37585659

RESUMO

Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.


Assuntos
Apatia , Transtornos Mentais , Animais , Humanos , Desenvolvimento de Medicamentos
7.
Am J Hum Genet ; 111(2): 323-337, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306997

RESUMO

Genome-wide association studies (GWASs) have uncovered susceptibility loci associated with psychiatric disorders such as bipolar disorder (BP) and schizophrenia (SCZ). However, most of these loci are in non-coding regions of the genome, and the causal mechanisms of the link between genetic variation and disease risk is unknown. Expression quantitative trait locus (eQTL) analysis of bulk tissue is a common approach used for deciphering underlying mechanisms, although this can obscure cell-type-specific signals and thus mask trait-relevant mechanisms. Although single-cell sequencing can be prohibitively expensive in large cohorts, computationally inferred cell-type proportions and cell-type gene expression estimates have the potential to overcome these problems and advance mechanistic studies. Using bulk RNA-seq from 1,730 samples derived from whole blood in a cohort ascertained from individuals with BP and SCZ, this study estimated cell-type proportions and their relation with disease status and medication. For each cell type, we found between 2,875 and 4,629 eGenes (genes with an associated eQTL), including 1,211 that are not found on the basis of bulk expression alone. We performed a colocalization test between cell-type eQTLs and various traits and identified hundreds of associations that occur between cell-type eQTLs and GWASs but that are not detected in bulk eQTLs. Finally, we investigated the effects of lithium use on the regulation of cell-type expression loci and found examples of genes that are differentially regulated according to lithium use. Our study suggests that applying computational methods to large bulk RNA-seq datasets of non-brain tissue can identify disease-relevant, cell-type-specific biology of psychiatric disorders and psychiatric medication.


Assuntos
Estudo de Associação Genômica Ampla , Lítio , Humanos , Estudo de Associação Genômica Ampla/métodos , RNA-Seq , Locos de Características Quantitativas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
8.
Am J Hum Genet ; 111(1): 48-69, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118447

RESUMO

Brain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts. By leveraging the UK Biobank image-derived phenotypes (IDPs), the IMAS discovered genetic bases underlying four neuropsychiatric disorders and verified them by analyzing annotations, pathways, and expression quantitative trait loci (eQTLs). A cerebellar-mediated mechanism was identified to be common to the four disorders. Simulations show that, if the goal is identifying genetic risk, our IMAS is more powerful than a hypothetical protocol in which the imaging results were available in the GWAS dataset. This implies the feasibility of reanalyzing legacy GWAS datasets without conducting additional imaging, yielding cost savings for integrated analysis of genetics and imaging.


Assuntos
Encefalopatias , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Fenótipo , Encefalopatias/genética , Polimorfismo de Nucleotídeo Único/genética
9.
EMBO Rep ; 25(2): 570-592, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253686

RESUMO

Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.


Assuntos
Transtorno Autístico , Melatonina , Animais , Adulto , Humanos , Peixe-Zebra/genética , Transtorno Autístico/genética , Encéfalo
10.
Am J Hum Genet ; 109(8): 1436-1457, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35907405

RESUMO

ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Adulto , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética
11.
Hum Genomics ; 18(1): 61, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863077

RESUMO

Trace Amine Associated Receptor 1 (TAAR1) is a novel pharmaceutical target under investigation for the treatment of several neuropsychiatric conditions. TAAR1 single nucleotide variants (SNV) have been found in patients with schizophrenia and metabolic disorders. However, the frequency of variants in geographically diverse populations and the functional effects of such variants are unknown. In this study, we aimed to characterise the distribution of TAAR1 SNVs in five different WHO regions using the Database of Genotypes and Phenotypes (dbGaP) and conducted a critical computational analysis using available TAAR1 structural data to identify SNVs affecting ligand binding and/or functional regions. Our analysis shows 19 orthosteric, 9 signalling and 16 micro-switch SNVs hypothesised to critically influence the agonist induced TAAR1 activation. These SNVs may non-proportionally influence populations from discrete regions and differentially influence the activity of TAAR1-targeting therapeutics in genetically and geographically diverse populations. Notably, our dataset presented with orthosteric SNVs D1033.32N (found only in the South-East Asian Region and Western Pacific Region) and T1945.42A (found only in South-East Asian Region), and 2 signalling SNVs (V1253.54A/T2526.36A, found in African Region and commonly, respectively), all of which have previously demonstrated to influence ligand induced functions of TAAR1. Furthermore, bioinformatics analysis using SIFT4G, MutationTaster 2, PROVEAN and MutationAssessor predicted all 16 micro-switch SNVs are damaging and may further influence the agonist activation of TAAR1, thereby possibly impacting upon clinical outcomes. Understanding the genetic basis of TAAR1 function and the impact of common mutations within clinical populations is important for the safe and effective utilisation of novel and existing pharmacotherapies.


Assuntos
Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Polimorfismo de Nucleotídeo Único/genética , Relação Estrutura-Atividade , Genótipo , Ligantes , Receptores Associados a Traços de Amina
12.
Brain ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808482

RESUMO

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

13.
Brain ; 147(3): 816-829, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109776

RESUMO

The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal 1991 article by Braak and Braak. This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Emaranhados Neurofibrilares , Tonsila do Cerebelo/diagnóstico por imagem , Lobo Temporal , Cognição
14.
Cell Mol Life Sci ; 81(1): 99, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386071

RESUMO

Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Neurônios , Fatores do Domínio POU , Fatores de Transcrição de Fator Regulador X , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , RNA-Seq , Diferenciação Celular , Proteínas de Homeodomínio/genética , Fatores do Domínio POU/genética , Fatores de Transcrição de Fator Regulador X/genética
15.
J Neurosci ; 43(40): 6816-6829, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37625855

RESUMO

Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.


Assuntos
Hormônio do Crescimento , Somatostatina , Feminino , Masculino , Camundongos , Animais , Somatostatina/metabolismo , Hormônio do Crescimento/metabolismo , Ansiedade , Medo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Neurônios/metabolismo
16.
Med Res Rev ; 44(3): 1267-1325, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226452

RESUMO

Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.


Assuntos
Transtorno Depressivo Maior , Humanos , Receptores Toll-Like/metabolismo , Sistema Nervoso Central , Imunidade Inata
17.
Med Res Rev ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808959

RESUMO

5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.

18.
Semin Cell Dev Biol ; 129: 31-39, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33975755

RESUMO

Olfactory dysfunction is manifested in a wide range of neurological and psychiatric diseases, and often emerges prior to the onset of more classical symptoms and signs. From a behavioral perspective, olfactory deficits typically arise in conjunction with impairments of cognition, motivation, memory, and emotion. However, a conceptual framework for explaining the impact of olfactory processing on higher brain functions in health and disease remains lacking. Here we aim to provide circuit-level insights into this question by synthesizing recent advances in olfactory network connectivity with other cortical brain regions such as the prefrontal cortex. We will focus on social cognition as a representative model for exploring and critically evaluating the relationship between olfactory cortices and higher-order cortical regions in rodent models. Although rodents do not recapitulate all dimensions of human social cognition, they have experimentally accessible neural circuits and well-established behavioral tests for social motivation, memory/recognition, and hierarchy, which can be extrapolated to other species including humans. In particular, the medial prefrontal cortex (mPFC) has been recognized as a key brain region in mediating social cognition in both rodents and humans. This review will highlight the underappreciated connectivity, both anatomical and functional, between the olfactory system and mPFC circuitry, which together provide a neural substrate for olfactory modulation of social cognition and social behaviors. We will provide future perspectives on the functional investigation of the olfactory-mPFC circuit in rodent models and discuss how to translate such animal research to human studies.


Assuntos
Córtex Pré-Frontal , Cognição Social , Animais , Encéfalo , Cognição , Humanos , Comportamento Social
19.
J Cell Mol Med ; 28(7): e18190, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494844

RESUMO

Systemic lupus erythematosus (SLE), a multifactorial autoimmune disease, can affect the brain and cause neuropsychiatric dysfunction, also named neuropsychiatric lupus (NPSLE). Microglial activation is observed in NPSLE patients. However, the mechanisms regulating microglia-mediated neurotoxicity in NPSLE remain elusive. Here, we showed that M1-like proinflammatory cytokine levels were increased in the cerebrospinal fluid (CSF) of SLE patients, especially those with neuropsychiatric symptoms. We also demonstrated that MRL/lpr lupus mice developed anxiety-like behaviours and cognitive deficits in the early and active phases of lupus, respectively. An increase in microglial number was associated with upregulation of proinflammatory cytokines in the MRL/lpr mouse brain. RNA sequencing revealed that genes associated with phagocytosis and M1 polarization were upregulated in microglia from lupus mice. Functionally, activated microglia induced synaptic stripping in vivo and promoted neuronal death in vitro. Finally, tofacitinib ameliorated neuropsychiatric disorders in MRL/lpr mice, as evidenced by reductions in microglial number and synaptic/neuronal loss and alleviation of behavioural abnormalities. Thus, our results indicated that classically activated (M1) microglia play a crucial role in NPSLE pathogenesis. Minocycline and tofacitinib were found to alleviate NPSLE by inhibiting micrglial activation, providing a promising therapeutic strategy.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Camundongos , Animais , Microglia , Depressão/tratamento farmacológico , Camundongos Endogâmicos MRL lpr , Encéfalo , Lúpus Eritematoso Sistêmico/genética , Citocinas
20.
J Biol Chem ; 299(4): 104586, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889589

RESUMO

MDGAs (MAM domain-containing glycosylphosphatidylinositol anchors) are synaptic cell surface molecules that regulate the formation of trans-synaptic bridges between neurexins (NRXNs) and neuroligins (NLGNs), which promote synaptic development. Mutations in MDGAs are implicated in various neuropsychiatric diseases. MDGAs bind NLGNs in cis on the postsynaptic membrane and physically block NLGNs from binding to NRXNs. In crystal structures, the six immunoglobulin (Ig) and single fibronectin III domains of MDGA1 reveal a striking compact, triangular shape, both alone and in complex with NLGNs. Whether this unusual domain arrangement is required for biological function or other arrangements occur with different functional outcomes is unknown. Here, we show that WT MDGA1 can adopt both compact and extended 3D conformations that bind NLGN2. Designer mutants targeting strategic molecular elbows in MDGA1 alter the distribution of 3D conformations while leaving the binding affinity between soluble ectodomains of MDGA1 and NLGN2 intact. In contrast, in a cellular context, these mutants result in unique combinations of functional consequences, including altered binding to NLGN2, decreased capacity to conceal NLGN2 from NRXN1ß, and/or suppressed NLGN2-mediated inhibitory presynaptic differentiation, despite the mutations being located far from the MDGA1-NLGN2 interaction site. Thus, the 3D conformation of the entire MDGA1 ectodomain appears critical for its function, and its NLGN-binding site on Ig1-Ig2 is not independent of the rest of the molecule. As a result, global 3D conformational changes to the MDGA1 ectodomain via strategic elbows may form a molecular mechanism to regulate MDGA1 action within the synaptic cleft.


Assuntos
Moléculas de Adesão de Célula Nervosa , Sinapses , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Sinapses/metabolismo , Sítios de Ligação , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Conformação Molecular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA