Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Sci Technol ; 58(12): 5267-5278, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478874

RESUMO

Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 µg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Humanos , Peixe-Zebra , Células Endoteliais/metabolismo , Bifenil Polibromatos/toxicidade , Larva/metabolismo , Retardadores de Chama/toxicidade
2.
Cell Mol Life Sci ; 79(7): 361, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697820

RESUMO

COVID-19 is a complex disease with short- and long-term respiratory, inflammatory and neurological symptoms that are triggered by the infection with SARS-CoV-2. Invasion of the brain by SARS-CoV-2 has been observed in humans and is postulated to be involved in post-COVID state. Brain infection is particularly pronounced in the K18-hACE2 mouse model of COVID-19. Prevention of brain infection in the acute phase of the disease might thus be of therapeutic relevance to prevent long-lasting symptoms of COVID-19. We previously showed that melatonin or two prescribed structural analogs, agomelatine and ramelteon delay the onset of severe clinical symptoms and improve survival of SARS-CoV-2-infected K18-hACE2 mice. Here, we show that treatment of K18-hACE2 mice with melatonin and two melatonin-derived marketed drugs, agomelatine and ramelteon, prevents SARS-CoV-2 entry in the brain, thereby reducing virus-induced damage of small cerebral vessels, immune cell infiltration and brain inflammation. Molecular modeling analyses complemented by experimental studies in cells showed that SARS-CoV-2 entry in endothelial cells is prevented by melatonin binding to an allosteric-binding site on human angiotensin-converting enzyme 2 (ACE2), thus interfering with ACE2 function as an entry receptor for SARS-CoV-2. Our findings open new perspectives for the repurposing of melatonergic drugs and its clinically used analogs in the prevention of brain infection by SARS-CoV-2 and COVID-19-related long-term neurological symptoms.


Assuntos
Tratamento Farmacológico da COVID-19 , Melatonina , Enzima de Conversão de Angiotensina 2 , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A , SARS-CoV-2
3.
Eur J Neurosci ; 53(4): 1238-1261, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32871623

RESUMO

The cerebral collaterals play an important role in penumbral tissue sustenance after an acute ischaemic stroke. Recent studies have demonstrated the potential role of collaterals in the selection of acute ischaemic stroke patients eligible for reperfusion therapy. However, the understanding of the significance and evidence around the role of collateral status in predicting outcomes in acute ischaemic stroke patients treated with reperfusion therapy is still unclear. Moreover, the use of pre-treatment collaterals in patient selection and prognosis is relatively underappreciated in clinical settings. A focused review of the literature was performed on the various methods of collateral evaluation and the role of collateral status in acute ischaemic stroke patients receiving reperfusion therapy. We discuss the methods of evaluating pre-treatment collaterals in clinical settings. The patient selection based on collateral status as well as the prognostic and therapeutic value of collaterals in acute ischaemic stroke, in settings of intravenous thrombolysis or endovascular therapy alone, and bridge therapy, are summarized. Recommendations for future research and possible pharmacological intervention strategies aimed at collateral enhancement are also discussed. Collaterals may play an important role in identifying acute ischaemic stroke patients who are likely to benefit from endovascular treatment in an extended time window. Future neuroscientific efforts to better improve our understanding of the role of collaterals in acute ischaemia as well as clinical studies to delineate its role in patient selection and acute stroke prognosis are warranted.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/terapia , Circulação Colateral , Humanos , Isquemia , Reperfusão , Acidente Vascular Cerebral/terapia
4.
FASEB J ; 33(12): 13966-13981, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638830

RESUMO

The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Dinoprostona/metabolismo , Microssomos/metabolismo , Prostaglandina-E Sintases/metabolismo , Convulsões/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Capilares/metabolismo , Ciclo-Oxigenase 2/metabolismo , Epilepsia/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
5.
Macromol Rapid Commun ; 41(5): e1900585, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009277

RESUMO

3D liquid crystal elastomer (3D-LCE) foams are used to support long-term neuronal cultures for over 60 days. Sequential imaging shows that cell density remains relatively constant throughout the culture period while the number of cells per observational area increases. In a subset of samples, retinoic acid is used to stimulate extensive neuritic outgrowth and maturation of proliferated neurons within the LCEs, inducing a threefold increase in length with cells displaying morphologies indicative of mature neurons. Designed LCEs' micro-channels have a similar diameter to endogenous parenchymal arterioles, ensuring that neurons throughout the construct have constant access to growth media during extended experiments. Here it is shown that 3D-LCEs provide a unique environment and simple method to longitudinally study spatial neuronal function, not possible in conventional culture environments, with simplistic integration into existing methodological pipelines.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Cristais Líquidos/química , Neurônios/citologia , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cristais Líquidos/ultraestrutura , Porosidade , Tretinoína/farmacologia
6.
Cell Mol Life Sci ; 76(10): 1987-2002, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30734065

RESUMO

At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man. Protein levels were quantified by a novel epitope dilution assay and confirmed the respective mRNA data. In contrast to the in vivo situation, Cldn5 dominates BBB expression in vitro, since all other TJ proteins are at comparably low levels or are not expressed. Cldn11 was highly abundant in vivo and contributed to paracellular tightness by homophilic oligomerization, but almost disappeared in vitro. Cldn25, also found at high levels, neither tightened the paracellular barrier nor interconnected opposing cells, but contributed to proper TJ strand morphology. Pathological conditions (in vivo ischemia and in vitro hypoxia) down-regulated Cldn1, -3, and -12, and occludin in cerebral capillaries, which was paralleled by up-regulation of Cldn5 after middle cerebral artery occlusion in rats. Cldn1 expression increased after Cldn5 knock-down. In conclusion, this complete Cldn/TAMP profile demonstrates the presence of up to a dozen TJ proteins in brain capillaries. Mouse and human share a similar and complex TJ profile in vivo, but this complexity is widely lost under in vitro conditions.


Assuntos
Barreira Hematoencefálica , Claudina-5/genética , Proteínas de Junções Íntimas/genética , Junções Íntimas/metabolismo , Adulto , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Células Cultivadas , Claudina-5/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
7.
Cephalalgia ; 39(3): 428-434, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29695168

RESUMO

PREMISE: Migraine is a complex neurologic disorder that leads to significant disability, yet remains poorly understood. PROBLEM: One potential triggering mechanism in migraine with aura is cortical spreading depression, which can activate the trigeminal nociceptive system both peripherally and centrally in animal models. A primary neuropeptide of the trigeminal system is calcitonin gene-related peptide, which is a potent vasodilatory peptide and is currently a major therapeutic target for migraine treatment. Despite the importance of both cortical spreading depression and calcitonin gene-related peptide in migraine, the relationship between these two players has been relatively unexplored. However, recent data suggest several potential vascular and neural connections between calcitonin gene-related peptide and cortical spreading depression. CONCLUSION: This review will outline calcitonin gene-related peptide-cortical spreading depression connections and propose a model in which cortical spreading depression and calcitonin gene-related peptide act at the intersection of the vasculature and cortical neurons, and thus contribute to migraine pathophysiology.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Transtornos de Enxaqueca/metabolismo , Vasodilatação/fisiologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Nervo Trigêmeo/efeitos dos fármacos , Nervo Trigêmeo/metabolismo , Vasodilatação/efeitos dos fármacos
8.
Scand J Med Sci Sports ; 29(4): 504-514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30561846

RESUMO

A density model of neurovascular structures was generated from 28 human vastus lateralis muscles isolated from embalmed cadavers. The intramuscular portion of arteries, veins, and nerves was dissected, traced on transparencies, and digitized before adjustment to an average muscle shape using Procrustes analysis to generate density distributions for the relative positions of these structures. The course of arteries, veins, and nerves was highly variable between individual muscles. Nevertheless, a zone of lower average neurovascular density was found between the tributaries from the lateral circumflex femoral and the deep femoral arteries. While the area with the lowest density was covered by the iliotibial tract and would therefore not be suitable for biopsies, another low-density area was located in the distal portion of vastus lateralis. This was just anterior to the iliotibial tract, in a zone that has been described as a good needle biopsy site. The reported complication rates of needle biopsies (0.1%-4%) are in the range of expectations when simulated based on this model. It is concluded that the optimal human vastus lateralis biopsy site is in the distal portion of the muscle, between ½ and ¾ of the length from the greater trochanter to the lateral epicondyle, just anterior to the iliotibial band.


Assuntos
Biópsia por Agulha/normas , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/inervação , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Artéria Femoral , Fêmur , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos
9.
J Neuroinflammation ; 15(1): 142, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29759062

RESUMO

BACKGROUND: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. METHODS: Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. RESULTS: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. CONCLUSIONS: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.


Assuntos
Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Permeabilidade Capilar/fisiologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Permeabilidade Capilar/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Hidrólise/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo
10.
Brain Behav Evol ; 91(3): 148-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099462

RESUMO

When comparative neuromorphological studies are extended into evolutionary contexts, traits of interest are often linked to diversification patterns. Features demonstrably associated with increases in diversification rates and the infiltration or occupation of novel niche spaces are often termed "key innovations." Within the past decade, phylogenetically informed methods have been developed to test key innovation hypotheses and evaluate the influence these traits have had in shaping modern faunas. This is primarily accomplished by estimating state-dependent speciation and extinction rates. These methods have important caveats and guidelines related to both calculation and interpretation, which are necessary to understand in cases of discrete (qualitative) character analysis, as can be common when studying the evolution of neuromorphology. In such studies, inclusion of additional characters, acknowledgement of character codistribution, and addition of sister clade comparison should be explored to ensure model accuracy. Even so, phylogenies provide a survivor-only examination of character evolution, and paleontological contexts may be necessary to replicate and confirm results. Here, I review these issues in the context of selective brain cooling - a neurovascular-mediated osmoregulatory physiology that dampens hypothalamic responses to heat stress and reduces evaporative water loss in large-bodied mammals. This binary character provides an example of the interplay between sample size, evenness, and character codistribution. Moreover, it allows for an opportunity to compare phylogenetically constrained results with paleontological data, augmenting survivor-only analyses with observable extinction patterns. This trait- dependent diversification example indicates that selective brain cooling is significantly associated with the generation of modern large-mammal faunas. Importantly, paleontological data validate phylogenetic patterns and demonstrate how suites of characters worked in concert to establish the large-mammal communities of today.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Fósseis , Osmorregulação/fisiologia , Filogenia , Animais , Encéfalo/irrigação sanguínea
11.
Surg Radiol Anat ; 40(12): 1343-1348, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30173375

RESUMO

PURPOSE: Controversy exists as to whether a high or low tie ligation of the inferior mesenteric artery (IMA) is the preferred technique in surgeries of the left colon and rectum. This study aims to contribute to the discussion as to which is the more beneficial technique by investigating the neurovasculature at each site. METHODS: Ten embalmed cadaveric donors underwent division of the inferior mesenteric artery at the level of the low tie. The artery was subsequently ligated at the root to render a section of tissue for histological analysis of the proximal (high tie), mid and distal (low tie) segments. RESULTS: Ganglia observed in the proximal end of seven specimens in the sample imply that there would be disruption to the innervation in a high tie procedure. CONCLUSION: This study suggests that a high tie should be avoided if the low tie is oncologically viable.


Assuntos
Colectomia/métodos , Artéria Mesentérica Inferior/inervação , Artéria Mesentérica Inferior/cirurgia , Idoso de 80 Anos ou mais , Anastomose Cirúrgica , Cadáver , Feminino , Humanos , Ligadura/métodos , Masculino
12.
J Neurosci Res ; 94(12): 1588-1603, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27662637

RESUMO

Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.


Assuntos
Demência Vascular/patologia , Hormese , Neuroproteção , Animais , Circulação Cerebrovascular , Humanos , Precondicionamento Isquêmico , Estresse Fisiológico
13.
Cell Mol Neurobiol ; 36(2): 233-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26988696

RESUMO

Vascular cognitive impairment and dementia (VCID) is the most common etiology of dementia in the elderly. Both, vascular and Alzheimer's disease, pathologies work synergistically to create neurodegeneration and cognitive impairments. The main causes of VCID include hemorrhage/microbleed (i.e., hyperhomocysteinemia), cerebral small vessel disease, multi-infarct dementia, severe hypoperfusion (i.e., bilateral common carotid artery stenosis), strategic infarct, angiopathy (i.e., cerebral angiopathy), and hereditary vasculopathy (i.e., cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). In this review, we will discuss the experimental animal models that have been developed to study these pathologies. We will discuss the limitations and strengths of these models and the important research findings that have advanced the field through the use of the models.


Assuntos
Disfunção Cognitiva/patologia , Demência Vascular/patologia , Modelos Animais de Doenças , Animais , Humanos
14.
J Infect Dis ; 211(12): 1977-86, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25351204

RESUMO

BACKGROUND: Malarial retinopathy (MR) has diagnostic and prognostic value in children with Plasmodium falciparum cerebral malaria (CM). A clinicopathological correlation between observed retinal changes during life and the degree of sequestration of parasitized red blood cells was investigated in ocular and cerebral vessels at autopsy. METHODS: In 18 Malawian children who died from clinically defined CM, we studied the intensity of sequestration and the maturity of sequestered parasites in the retina, in nonretinal ocular tissues, and in the brain. RESULTS: Five children with clinically defined CM during life had other causes of death identified at autopsy, no MR, and scanty intracerebral sequestration. Thirteen children had MR and died from CM. MR severity correlated with percentage of microvessels parasitized in the retina, brain, and nonretinal tissues with some neuroectodermal components (all P < .01). In moderate/severe MR cases (n = 8), vascular congestion was more intense (ρ = 0.841; P < .001), sequestered parasites were more mature, and the quantity of extraerythrocytic hemozoin was higher, compared with mild MR cases (n = 5). CONCLUSIONS: These data provide a histopathological basis for the known correlation between degrees of retinopathy and cerebral dysfunction in CM. In addition to being a valuable tool for clinical diagnosis, retinal observations give important information about neurovascular pathophysiology in pediatric CM.


Assuntos
Oftalmopatias/patologia , Oftalmopatias/parasitologia , Malária Cerebral/patologia , Malária Falciparum/patologia , Plasmodium falciparum/isolamento & purificação , Retina/patologia , Retina/parasitologia , Encéfalo/parasitologia , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Histocitoquímica , Humanos , Lactente , Recém-Nascido , Malária Cerebral/complicações , Malaui , Masculino , Carga Parasitária
15.
Somatosens Mot Res ; 31(2): 94-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24840564

RESUMO

The 26th annual Barrels meeting was convened on the campus of the University of California San Diego, not far from the shores of the Pacific Ocean. The meeting focused on three main themes: the structure and function of the thalamic reticular nucleus, the neurovasculature system and its role in brain metabolism, and the origins and functions of cortical GABAergic interneurons. In addition to the major themes, there were short talks, a data blitz, and a poster session which highlighted the diversity and quality of the research ongoing in the rodent whisker-to-barrel system.


Assuntos
Vias Aferentes/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Humanos , Oceano Pacífico
16.
Sci Rep ; 14(1): 18981, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152179

RESUMO

Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.


Assuntos
Altitude , Cognição , Hipocampo , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Microglia , Neurônios , Animais , Microglia/metabolismo , Microglia/fisiologia , Masculino , Camundongos , Hipocampo/metabolismo , Cognição/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Aclimatação/fisiologia , Medo/fisiologia , Memória/fisiologia , Glucose/metabolismo , Compostos Orgânicos
17.
Ann Med Surg (Lond) ; 86(5): 2794-2804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694300

RESUMO

Introduction: The blood-brain barrier (BBB) is a critical neurovascular unit regulating substances' passage from the bloodstream to the brain. Its selective permeability poses significant challenges in drug delivery for neurological disorders. Conventional methods often fail due to the BBB's complex structure. Aim: The study aims to shed light on their pivotal role in revolutionizing neurotherapeutics and explores the transformative potential of BBB-on-a-Chip technologies in drug delivery research to comprehensively review BBB-on-a-chip technologies, focusing on their design, and substantiate advantages over traditional models. Methods: A detailed analysis of existing literature and experimental data pertaining to BBB-on-a-Chip technologies was conducted. Various models, their physiological relevance, and innovative design considerations were examined through databases like Scopus, EbscoHost, PubMed Central, and Medline. Case studies demonstrating enhanced drug transport through BBB-on-a-Chip models were also reviewed, highlighting their potential impact on neurological disorders. Results: BBB-on-a-Chip models offer a revolutionary approach, accurately replicating BBB properties. These microphysiological systems enable high-throughput screening, real-time monitoring of drug transport, and precise localization of drugs. Case studies demonstrate their efficacy in enhancing drug penetration, offering potential therapies for diseases like Parkinson's and Alzheimer's. Conclusion: BBB-on-a-Chip models represent a transformative milestone in drug delivery research. Their ability to replicate BBB complexities, offer real-time monitoring, and enhance drug transport holds immense promise for neurological disorders. Continuous research and development are imperative to unlock BBB-on-a-Chip models' full potential, ushering in a new era of targeted, efficient, and safer drug therapies for challenging neurological conditions.

18.
Adv Healthc Mater ; 13(3): e2301221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916912

RESUMO

Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.


Assuntos
Nanopartículas , Vasodilatadores , Camundongos , Animais , Dióxido de Silício , Polímeros/farmacologia , Eletrodos Implantados , Encéfalo/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
19.
Anat Rec (Hoboken) ; 307(3): 658-668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328879

RESUMO

Oxygenated blood is required for the adequate metabolic activity of the brain. This is supplied by the circle of Willis (CoW) and the vertebrobasilar and carotid systems. The CoW ensures blood flow in case of arterial stenosis or occlusion. Different animal models have been explored for the CoW morphological and functional study. This work aims to characterize the vascular architecture of the CoW of the plains vizcacha, Lagostomus maximus (Suborder: Hystricomorpha), and to compare it with evolutionarily related species of Caviomorpha and Muroidea. The blood supply in adult plains vizcachas was studied using latex cerebrovascular casts and angiography. A caudo-rostral flow direction was determined, beginning in the spinal and vertebral arteries and converging in the basilar artery which bifurcates in the carotid-basilar communication in the caudal communicating arteries. In the first third of its course, the caudal cerebral arteries project laterally, and the middle and rostral cerebral arteries bifurcate from their rostral terminal segment, supplying the temporo-parietal and frontal cortex. The CoW architecture is mainly conserved between rodent species. Likewise, the small neurovascular variations observed could be considered phylogenetic morphological variations more than evolutionary adaptations. The absence of the rostral communicating artery that generates the rostral open architecture of the CoW in the vizcacha as in the other analyzed species, supports the need for a revision of the CoW classical function as a security system. Finally, this work supports the importance of expanding our understanding of brain anatomy among species, which may contribute to a better understanding of functional neuroanatomy.


Assuntos
Encéfalo , Hemodinâmica , Animais , Filogenia , Círculo Arterial do Cérebro , América do Sul , Circulação Cerebrovascular
20.
Psychol Res Behav Manag ; 17: 1573-1585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617578

RESUMO

Background: Identifying the fundus objective biomarkers for the major depressive disorders (MDD) may help promote mental health. The aim of this study was to evaluate retinal neurovascular changes and further investigate their association with disease severity in MDD. Methods: This cross-sectional study conducted in the hospital enrolled patients with MDD and healthy controls.The retinal neurovascular parameters for all subjects, including vessel density (VD), thickness of ganglion cell complex (GCC) and retinal nerve fiber layer (RNFL), and optic nerve head (ONH) eg are automatically calculated by the software in optical coherence tomography angiography (OCTA). The severity of MDD including depressive symptoms, anxiety, cognition, and insomnia was assessed by Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Scale (HAMA), Montreal Cognitive Assessment (MoCA), and Insomnia Severity Index (ISI) respectively. Results: This study included 74 MDD patients (n=74 eyes) and 60 healthy controls (HCs) (n=60 eyes). MDD patients showed significantly decreased VD of superficial and deep capillary plexus, thickness of GCC and RNFL, and volume of ONH (all p<0.05) and increased vertical cup-to-disc ratio and global loss volume (GLV) (all p<0.05) compared to HCs. Positive associations were found between HAMD scores and cup area (r=0.30, p=0.035), cup volume (r=0.31, p=0.029), and disc area (r=0.33, p=0.020) as well as ISI scores and RNFL thickness (r=0.34, p=0.047). Conclusion: We found the retinal neurovascular impairment and its association with disease severity in MDD patients. OCTA showed promise as a potential complementary assessment tool for MDD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA