Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 300(6): 107382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763337

RESUMO

ASCT2 (alanine serine cysteine transporter 2), a member of the solute carrier 1 family, mediates Na+-dependent exchange of small neutral amino acids across cell membranes. ASCT2 was shown to be highly expressed in tumor cells, making it a promising target for anticancer therapies. In this study, we explored the binding mechanism of the high-affinity competitive inhibitor L-cis hydroxyproline biphenyl ester (Lc-BPE) with ASCT2, using electrophysiological and rapid kinetic methods. Our investigations reveal that Lc-BPE binding requires one or two Na+ ions initially bound to the apo-transporter with high affinity, with Na1 site occupancy being more critical for inhibitor binding. In contrast to the amino acid substrate bound form, the final, third Na+ ion cannot bind, due to distortion of its binding site (Na2), thus preventing the formation of a translocation-competent complex. Based on the rapid kinetic analysis, the application of Lc-BPE generated outward transient currents, indicating that despite its net neutral nature, the binding of Lc-BPE in ASCT2 is weakly electrogenic, most likely because of asymmetric charge distribution within the amino acid moiety of the inhibitor. The preincubation with Lc-BPE also led to a decrease of the turnover rate of substrate exchange and a delay in the activation of substrate-induced anion current, indicating relatively slow Lc-BPE dissociation kinetics. Overall, our results provide new insight into the mechanism of binding of a prototypical competitive inhibitor to the ASCT transporters.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/química , Cinética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Humanos , Sódio/metabolismo , Sódio/química , Animais , Ligação Competitiva
2.
Biol Pharm Bull ; 47(3): 652-659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508745

RESUMO

Platelets have been reported to exert diverse actions besides hemostasis and thrombus formation in the body. However, whether platelets affect transporter activity remains to be determined. In this study, we examined the effects of platelets on the activity of amino acid transporter system A, which is known to be changed by various factors, and we clarified the mechanism by which platelets affect system A activity. Among system A subtypes, we found that sodium-coupled neutral amino acid transporter (SNAT) 4 played a central role in the transport activity of system A in HuH-7 human hepatoma cells. Interestingly, platelets showed a biphasic effect on system A activity: activated platelet supernatants (APS) including the granule contents released from platelets downregulated system A activity at lower concentrations and the downregulation was suppressed at higher concentrations. The downregulation was due to a decrease in the affinity of SNAT4 for its substrate and not a decrease in the SNAT4 abundance on the plasma membrane. In addition, APS did not decrease the expression level of SNAT4 mRNA. On the other hand, platelets did not affect system A activity when the platelet suspension was added to HuH-7 cells. These results indicate that platelets indirectly affect the transport activity of system A by releasing bioactive substances but do not directly affect it by binding to HuH-7 cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sistemas de Transporte de Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , RNA Mensageiro/genética
3.
Mol Pharm ; 20(2): 1331-1346, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688491

RESUMO

Membrane transporters are the key determinants of the homeostasis of endogenous compounds in the cells and their exposure to drugs. However, the substrate specificities of distinct transporters can overlap. In the present study, the interactions of l-type amino acid transporter 1 (LAT1)-utilizing prodrugs with sodium-coupled neutral amino acid transporter 2 (SNAT2) were explored. The results showed that the cellular uptake of LAT1-utilizing prodrugs into a human breast cancer cell line, MCF-7 cells, was mediated via SNATs as the uptake was increased at higher pH (8.5), decreased in the absence of sodium, and inhibited in the presence of unselective SNAT-inhibitor, (α-(methylamino)isobutyric acid, MeAIB). Moreover, docking the compounds to a SNAT2 homology model (inward-open conformation) and further molecular dynamics simulations and the subsequent trajectory and principal component analyses confirmed the chemical features supporting the interactions of the studied compounds with SNAT2, which was found to be the main SNAT expressed in MCF-7 cells.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Pró-Fármacos , Humanos , Pró-Fármacos/química , Células MCF-7 , Sistemas de Transporte de Aminoácidos , Sódio
4.
Cancer Sci ; 112(3): 1132-1140, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33277750

RESUMO

α-Methyl-l-tyrosine (AMT) has a high affinity for the cancer-specific l-type amino acid transporter 1 (LAT1). Therefore, we established an anti-cancer therapy, with 211 At-labeled α-methyl-l-tyrosine (211 At-AAMT) as a carrier of 211 At into tumors. 211 At-AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double-stranded breaks in vitro. We evaluated the accumulation of 211 At-AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211 At-AAMT inhibited tumor growth in the PANC-1 tumor model and 1 MBq/mouse 211 At-AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211 At would be useful for anti-cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.


Assuntos
Partículas alfa/uso terapêutico , Astato/administração & dosagem , Portadores de Fármacos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/radioterapia , alfa-Metiltirosina/farmacologia , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Eur J Nucl Med Mol Imaging ; 48(10): 3113-3121, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33590273

RESUMO

PURPOSE: In this work, the safety, biodistribution, and radiation dosimetry of large neutral amino acid transporter type-1 (LAT-1) targeting PET tracer 18F-trifluorobborate-derived tyrosine (denoted as 18F-FBY) has been investigated. It is designed as a first-in-human study in healthy volunteers and to assay LAT-1 expression level in glioma patients. METHODS: Six healthy volunteers (3 M, 3 F) underwent whole-body PET acquisitions at multiple time points after bolus injection of 18F-FBY. Regions of interest (ROIs) were mapped manually on major organs, and then the time-activity curves (TACs) were obtained. Dosimetry was calculated with the OLINDA/EXM software. Thirteen patients who were suspected of glioma were scanned with PET/CT at 30 min after 18F-FBY injection. Within 7 days after PET/CT, the tumor was removed surgically, and LAT-1 immunohistochemical staining for LAT-1 was performed on tumor samples and correlated with 18F-FBY PET imaging. RESULTS: 18F-FBY was well tolerated by all healthy volunteers, and no adverse symptoms were observed or reported. 18F-FBY is rapidly cleared from the blood circulation and excreted mainly through the kidneys and urinary tract. The effective dose (ED) was 0.0039 ± 0.0006 mSv/MBq. In 14 surgical confirmed gliomas (one of the patiens had two gliomas), 18F-FBY uptake increased consistently with tumor grade, with maximum standard uptake values (SUVmax) of 0.28 ± 0.14 and 2.84 ± 0.46 and tumor-to-normal contralateral activity (T/N) ratio of 2.30 ± 1.26 and 24.56 ± 6.32 in low- and high-grade tumors, respectively. In addition to the significant difference in the uptakes between low- and high-grade gliomas (P < 0.001), the immunohistochemical staining confirmed the positive correlations between the SUVmax, LAT-1 expression (r2 = 0.80, P < 0.001), and Ki-67 labeling index (r2 = 0.79, P < 0.001). CONCLUSION: 18F-FBY is a PET tracer with favorable dosimetry profile and pharmacokinetics. It has the potential to assay LAT-1 expression in glioma patients and may provide imaging guidance for further boron neutron capture therapy of gliomas. TRIAL REGISTRATION: clinicaltrials.gov (NCT03980431).


Assuntos
Glioma , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Glioma/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Tomografia por Emissão de Pósitrons , Radiometria , Distribuição Tecidual
6.
Biochem J ; 477(8): 1443-1457, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32242892

RESUMO

Glutamine transport across cell membranes is performed by a variety of transporters, including the alanine serine cysteine transporter 2 (ASCT2). The substrate-binding site of ASCT2 was proposed to be specific for small amino acids with neutral side chains, excluding basic substrates such as lysine. A series of competitive inhibitors of ASCT2 with low µM affinity were developed previously, on the basis of the 2,4-diaminobutyric acid (DAB) scaffold with a potential positive charge in the side chain. Therefore, we tested whether basic amino acids with side chains shorter than lysine can interact with the ASCT2 binding site. Molecular docking of L-1,3-diaminopropionic acid (L-DAP) and L-DAB suggested that these compounds bind to ASCT2. Consistent with this prediction, L-DAP and L-DAB, but not ornithine, lysine or D-DAP, elicited currents when applied to ASCT2-expressing cells. The currents were carried by anions and showed the hallmark properties of ASCT2 currents induced by transported substrates. The L-DAP response could be eliminated by a competitive ASCT2 inhibitor, suggesting that binding occurs at the substrate binding site. The KM for L-DAP was weakly voltage dependent. Furthermore, the pH dependence of the L-DAP response showed that the compound can bind in several protonation states. Together, these results suggest that the ASCT2 binding site is able to recognize L-amino acids with short, basic side chains, such as the L-DAP derivative ß-N-methylamino-l-Alanine (BMAA), a well-studied neurotoxin. Our results expand the substrate specificity of ASCT2 to include amino acid substrates with positively charged side chains.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos Básicos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/genética , Aminoácidos Básicos/química , Aminobutiratos/química , Aminobutiratos/metabolismo , Animais , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Cinética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Especificidade por Substrato
7.
Small ; 16(34): e2003757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32686344

RESUMO

Exogenous sources of amino acids are essential nutrients to fuel cancer growth. Here, the increased demand for amino acid displayed by cancer cells is unconventionally exploited as a design principle to replete cancer cells with apoptosis inducing nanoscopic porous amino acid mimics (Nano-PAAM). A small library consisting of nine essential amino acids nanoconjugates (30 nm) are synthesized, and the in vitro anticancer activity is evaluated. Among the Nano-PAAMs, l-phenylalanine functionalized Nano-PAAM (Nano-pPAAM) has emerged as a novel nanotherapeutics with excellent intrinsic anticancer and cancer-selective properties. The therapeutic efficacy of Nano-pPAAM against a panel of human breast, gastric, and skin cancer cells could be ascribed to the specific targeting of the overexpressed human large neutral amino acid transporter SLC7A5 (LAT-1) in cancer cells, and its intracellular reactive oxygen species (ROS) inducing properties of the nanoporous core. At the mechanistic level, it is revealed that Nano-pPAAM could activate both the extrinsic and intrinsic apoptosis pathways to exert a potent "double-whammy" anticancer effect. The potential clinical utility of Nano-pPAAM is further investigated using an MDA-MB-231 xenograft in NOD scid gamma mice, where an overall suppression of tumor growth by 60% is achieved without the aid of any drugs or application of external stimuli.


Assuntos
Antineoplásicos , Aminoácidos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Camundongos , Nanoconjugados , Porosidade
8.
Proc Natl Acad Sci U S A ; 114(9): 2373-2378, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193893

RESUMO

By selection of winners of dyadic fights for 35 generations, we have generated a hyperaggressive Bully line of flies that almost always win fights against the parental wild-type Canton-S stock. Maintenance of the Bully phenotype is temperature dependent during development, with the phenotype lost when flies are reared at 19 °C. No similar effect is seen with the parent line. This difference allowed us to carry out RNA-seq experiments and identify a limited number of genes that are differentially expressed by twofold or greater in the Bullies; one of these was a putative transmembrane transporter, CG13646, which showed consistent and reproducible twofold down-regulation in Bullies. We examined the causal effect of this gene on the phenotype with a mutant line for CG13646, and with an RNAi approach. In all cases, reduction in expression of CG13646 by approximately half led to a hyperaggressive phenotype partially resembling that seen in the Bully flies. This gene is a member of a very interesting family of solute carrier proteins (SLCs), some of which have been suggested as being involved in glutamine/glutamate and GABA cycles of metabolism in excitatory and inhibitory nerve terminals in mammalian systems.


Assuntos
Agressão , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , RNA Mensageiro/genética , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Masculino , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Temperatura
9.
Nutr Res Rev ; 32(1): 70-78, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30284526

RESUMO

It has been nearly 70 years since the discovery that strict adherence to a diet low in phenylalanine prevents severe neurological sequelae in patients with phenylalanine hydroxylase deficiency (phenylketonuria; PKU). Today, dietary treatment with restricted phenylalanine intake supplemented with non-phenylalanine amino acids to support growth and maintain a healthy body composition remains the mainstay of therapy. However, a better understanding is needed of the factors that influence N balance in the context of amino acid supplementation. The aim of the present paper is to summarise considerations for improving N balance in patients with PKU, with a focus on gaining greater understanding of amino acid absorption, disposition and utilisation. In addition, the impact of phenylalanine-free amino acids on 24 h blood phenylalanine/tyrosine circadian rhythm is evaluated. We compare the effects of administering intact protein v. free amino acid on protein metabolism and discuss the possibility of improving outcomes by administering amino acid mixtures so that their absorption profile mimics that of intact protein. Protein substitutes with the ability to delay absorption of phenylalanine and tyrosine, mimicking physiological absorption kinetics, are expected to improve the rate of assimilation into protein and minimise fluctuations in quantitative plasma amino acid levels. They may also help maintain normal glycaemia and satiety sensation. This is likely to play an important role in improving the management of patients with PKU.


Assuntos
Aminoácidos/metabolismo , Suplementos Nutricionais , Nitrogênio/metabolismo , Fenilalanina/metabolismo , Fenilcetonúrias/metabolismo , Aminoácidos/farmacologia , Ritmo Circadiano , Dieta , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Proteínas Alimentares/uso terapêutico , Humanos , Absorção Intestinal/efeitos dos fármacos , Fenilcetonúrias/dietoterapia , Tirosina/metabolismo
10.
Cell Physiol Biochem ; 50(4): 1460-1473, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359963

RESUMO

BACKGROUND/AIMS: The neutral, non-essential amino acid glycine has manifold functions and effects under physiological and pathophysiological conditions. Besides its function as a neurotransmitter in the central nervous system, glycine also exerts immunomodulatory effects and as an osmolyte it participates in cell volume regulation. During phagocytosis, glycine contributes to (local) cell volume-dependent processes like lamellipodium formation. Similar to the expansion of the lamellipodium we assume that glycine also affects the migration of microglial cells in a cell volume-dependent manner. METHODS: Mean cell volume (MCV) and cell migration were determined using flow cytometry and trans-well migration assays, respectively. Electrophysiological recordings of the cell membrane potential (Vmem) and swelling-dependent chloride (Cl-) currents (IClswell, VSOR, VRAC) were performed using the whole-cell patch clamp technique. RESULTS: In the murine microglial cell line BV-2, flow cytometry analysis revealed that glycine (5 mM) increases the MCV by ∼9%. The glycine-dependent increase in MCV was suppressed by the partial sodium-dependent neutral amino acid transporter (SNAT) antagonist MeAIB and augmented by the Cl- current blocker DCPIB. Electrophysiological recordings showed that addition of glycine activates a Cl- current under isotonic conditions resembling features of the swelling-activated Cl- current (IClswell). The cell membrane potential (Vmem) displayed a distinctive time course after glycine application; initially, glycine evoked a rapid depolarization mediated by Na+-coupled glycine uptake via SNAT, followed by a further gradual depolarization, which was fully suppressed by DCPIB. Interestingly, glycine significantly increased migration of BV-2 cells, which was suppressed by MeAIB, suggesting that SNAT is involved in the migration process of microglial cells. CONCLUSION: We conclude that glycine acts as a chemoattractant for microglial cells presumably by a cell volume-dependent mechanism involving SNAT-mediated cell swelling.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Tamanho Celular/efeitos dos fármacos , Glicina/farmacologia , Sistema A de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cloretos/metabolismo , Ciclopentanos/farmacologia , Soluções Hipotônicas/farmacologia , Indanos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Microglia/citologia , Microglia/metabolismo , Nitrobenzoatos/farmacologia , Técnicas de Patch-Clamp
11.
Microvasc Res ; 120: 29-35, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29870781

RESUMO

OBJECTIVE: Glutamate excitotoxicity provokes neuronal cell damage and death, leading to collapse of the blood-brain barrier (BBB). Recently, it has been reported that l-citrulline, a neutral amino acid and a major precursor of l-arginine in the nitric oxide (NO) cycle, can prevent both neuronal cell death and cerebrovascular cell loss in brain ischemia. Therefore, the objective of this study was to investigate the effect of l-citrulline on glutamate cytotoxicity in the BBB using the conditionally immortalized rat brain capillary endothelial cell line (TR-BBB cells) as an in vitro model of the BBB. METHODS: Cell viability was determined using MTT assay. Cellular uptake of [14C] l-citrulline and expression levels of rat large neutral amino acid transporter 1 (rLAT1), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) at mRNA level were performed using quantitative real-time polymerase chain reaction (PCR) analysis. NO production from TR-BBB cells was measured using Griess reagents. All experiments were performed after treatment of TR-BBB cells with glutamate alone or co-treatment with l-citrulline, l-arginine, and/or taurine for 24 h. RESULTS: l-Citrulline treatment increased cell viability, [14C] l-citrulline uptake, and the mRNA levels of LAT1 and eNOS in TR-BBB cells treated with glutamate. However, iNOS mRNA expression was inhibited by l-citrulline. NO production and transcript level of iNOS were markedly increased by glutamate treatment alone. However, co-treatment with l-citrulline, taurine, or both l-citrulline and taurine decreased NO levels and mRNA levels of iNOS in TR-BBB cells treated with glutamate. In co-treatment of TR-BBB cells with l-arginine, a NO donor, and glutamate, NO levels were increased and expression levels of iNOS mRNA were similar compared to those in cells treated with glutamate alone. CONCLUSION: l-Citrulline can restore NO level and its cellular uptake in TR-BBB cells with glutamate cytotoxicity. Supplying l-citrulline at the BBB may provide neuroprotective effect to improve cerebrovascular dysfunction such as a brain ischemia.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Capilares/efeitos dos fármacos , Citrulina/farmacologia , Células Endoteliais/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Glutâmico/toxicidade , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Animais , Antígenos Virais de Tumores/genética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Transgênicos , Vírus 40 dos Símios/genética
12.
Int J Mol Sci ; 19(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498661

RESUMO

Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco's modified Eagle's (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.


Assuntos
Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , beta-Alanina/análogos & derivados , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos , Aminoácidos/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Espaço Intracelular/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteólise , Suínos , beta-Alanina/farmacologia
13.
Bioorg Med Chem Lett ; 27(3): 398-402, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057420

RESUMO

The glutamine transporter ASCT2 has been identified as a promising target to inhibit rapid growth of cancer cells. However, ASCT2 pharmacology is not well established. In this report, we performed a systematic structure activity analysis of a series of substituted benzylproline derivatives. Substitutions on the phenyl ring resulted in compounds with characteristics of ASCT2 inhibitors. Apparent binding affinity increased with increasing hydrophobicity of the side chain. In contrast, interaction of the ASCT2 binding site with specific positions on the phenyl ring was not observed. The most potent compound inhibits the ASCT2 anion conductance with a Ki of 3µM, which is in the same range as that of more bulky and higher molecular weight inhibitors recently reported by others. The experimental results are consistent with computational analysis based on docking of the inhibitors against an ASCT2 homology model. The benzylproline scaffold provides a valuable tool for further improving binding potency of future ASCT2 inhibitors.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Prolina/análogos & derivados , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Prolina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade
14.
J Urol ; 195(5): 1588-1597, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26682754

RESUMO

PURPOSE: Cancer cells require massive amounts of amino acids for survival. LAT1 (L-type amino acid transporter 1) transports essential amino acids, including leucine, which trigger the downstream mTOR (mammalian target of rapamycin) pathway. We examined the association between androgen receptor and LAT1, and the association between LAT1 expression and the acquisition of castration resistance. MATERIALS AND METHODS: Western blot and real-time polymerase chain reaction were performed to study protein and mRNA expression. siRNA was used to knock down target genes. A total of 92 prostate biopsy specimens of patients who underwent androgen deprivation therapy were used for immunohistochemical analyses. Cox hazard proportional models and the Kaplan-Meier method were used for statistical analyses. RESULTS: LAT1 was highly expressed in hormone resistant prostate cancer cell lines. Knockdown of LAT1 in LNCaP and C4-2 cells significantly suppressed cell proliferation, migration and invasion. Androgen receptor siRNA or androgen receptor blocking through bicalutamide (10 µM) or MDV3100 (10 µM) significantly increased LAT1 expression (p <0.01). Treatment with dihydrotestosterone (0.1 to 10 nM) reduced LAT1 expression in a dose dependent manner (p <0.01). Bicalutamide/MDV3100 plus siLAT1 synergistically suppressed prostate cancer cell proliferation compared to single inhibition by androgen receptor or LAT1 (p <0.01). High LAT1 expression correlated with significantly shorter prostate specific antigen recurrence-free survival in patients receiving androgen deprivation therapy (p <0.0001). LAT1 expression was an independent predictor of castration resistance on multivariate analysis (HR 3.56, p = 0.0133). CONCLUSIONS: The current data may indicate a novel mechanism to acquire castration resistance through activation of the amino acid transporter LAT1.


Assuntos
Anilidas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Nitrilas/uso terapêutico , Próstata/patologia , Neoplasias da Próstata/genética , RNA Neoplásico/genética , Compostos de Tosil/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Idoso , Antagonistas de Androgênios/uso terapêutico , Biópsia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/biossíntese , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
15.
Neurochem Res ; 41(9): 2256-66, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27161376

RESUMO

The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Cinurenina/farmacologia , Animais , Encéfalo/metabolismo , Masculino , Ratos Wistar , Esquizofrenia/metabolismo , Triptofano/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
16.
Br J Nutr ; 116(12): 2030-2043, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27993179

RESUMO

For this study, threonine (Thr) deficiency was hypothesised to exacerbate the intestinal damage induced by feed withdrawal with coccidial infection because of its high obligatory requirement by the gut; two dietary Thr treatments (0·49 and 0·90 %) were applied to chicks from 0 to 21 d of age. At 13 d of age, feed was withdrawn for 24 h from one-half of birds of each dietary treatment with subsequent gavage of a 25× dose of coccidial vaccine. Overall, there were four treatments with eight replicate cages per treatment. Under combined challenge, birds fed the Thr-deficient diet had 38 % lower 13-21-d body weight gain (P≤0·05) compared with birds fed the Thr-control diet. At 21 d, the challenged group fed low Thr had higher number of oocysts (+40 %, P=0·03) and lower crypt depth (-31 %, P0·05). Overall, Thr deficiency worsened the detrimental effects of combined feed withdrawal and coccidial infection on growth performance and oocyst shedding by impairing intestinal morphology, barrier function, lymphocyte profiles and their cytokine expressions.


Assuntos
Coccidiose/veterinária , Deficiências Nutricionais/veterinária , Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Doenças das Aves Domésticas/fisiopatologia , Vacinas Protozoárias/uso terapêutico , Treonina/deficiência , Administração Oral , Animais , Restrição Calórica/efeitos adversos , Restrição Calórica/veterinária , Ceco/efeitos dos fármacos , Ceco/imunologia , Ceco/parasitologia , Ceco/patologia , Galinhas/crescimento & desenvolvimento , Coccidiose/imunologia , Coccidiose/patologia , Coccidiose/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Deficiências Nutricionais/imunologia , Deficiências Nutricionais/fisiopatologia , Dieta com Restrição de Proteínas/efeitos adversos , Dieta com Restrição de Proteínas/veterinária , Eimeria/efeitos dos fármacos , Eimeria/crescimento & desenvolvimento , Eimeria/imunologia , Eimeria/isolamento & purificação , Interações Hospedeiro-Parasita/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/imunologia , Íleo/parasitologia , Íleo/patologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/patologia , Jejuno/efeitos dos fármacos , Jejuno/crescimento & desenvolvimento , Jejuno/imunologia , Masculino , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Distribuição Aleatória
17.
Br J Nutr ; 115(3): 379-88, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26586314

RESUMO

In this study, we chose a carnivorous fish, turbot (Scophthalmus maximus L.), to examine its nutrient-sensing and metabolic responses after ingestion of diets with fishmeal (FM), or 45% of FM replaced by soyabean meal (34·6% dry diet) balanced with or without essential amino acids (EAA) to match the amino acid profile of FM diet for 30 d. After a 1-month feeding trial, fish growth, feed efficiency and nutrient retention were markedly reduced by soyabean meal-incorporated (SMI) diets. Compared with the FM diet, SMI led to a reduction of postprandial influx of free amino acids, hypoactivated target of rapamycin signalling and a hyperactivated amino acid response pathway after refeeding, a status associated with reduced protein synthesis, impaired postprandial glycolysis and lipogenesis. These differential effects were not ameliorated by matching an EAA profile of soyabean meal to that of the FM diet through dietary amino acid supplementation. Therefore, this study demonstrated that the FM diet and SMI diets led to distinct nutrient-sensing responses, which in turn modulated metabolism and determined the utilisation efficiency of diets. Our results provide a new molecular explanation for the role of nutrient sensing in the inferior performance of aquafeeds in which FM is replaced by soyabean meal.


Assuntos
Dieta/veterinária , Glycine max , Período Pós-Prandial , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/sangue , Ração Animal/análise , Animais , Proteínas Alimentares/administração & dosagem , Linguados , Refeições
18.
Biochem J ; 470(2): 207-21, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348909

RESUMO

The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Autofagia , Linhagem Celular , Proliferação de Células , Inativação Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Proteína Regulatória Associada a mTOR , Serina/genética , Serina/metabolismo , Transdução de Sinais
19.
Immunology ; 146(4): 607-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346312

RESUMO

Proliferation of rapidly dividing bone marrow-derived cells is strongly dependent on the availability of free glutamine, whose uptake is mediated through different amino acid transporters. The sodium-coupled neutral amino acid transporter (SNAT) family was previously reported to be associated with the development of collagen-induced arthritis in mice. Here, we tested the hypothesis whether impairment of SNAT proteins influences immune cell function and in turn alters arthritis development. The 2-(methylamino)isobutyric acid (MeAIB), a SNAT-specific substrate, was used to modulate the function of SNAT proteins. We demonstrate that glutamine uptake by murine naive lymphocytes, and consequent cell proliferation, is strongly associated with system A transporters. Physiological impairment of SNAT proteins reduced the antibody-initiated effector phase of arthritis, mainly by affecting the levels of circulating monocytes and neutrophils. MeAIB was also shown to affect the proliferation of immortalized cells, through trans-inhibition of SNAT proteins. Based on our observations, we conclude that SNAT proteins regulate the initial stages of lymphocyte activation by regulating glutamine uptake, and that the effector phase of arthritis can be affected by non-metabolized SNAT substrates. Most probably, metabolically active cells within both the adaptive and the innate immune systems are regulated by SNAT proteins and play a role in modifying arthritis development.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Anticorpos/efeitos adversos , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Glutamina/metabolismo , Animais , Anticorpos/imunologia , Artrite Experimental/genética , Artrite Experimental/patologia , Linhagem Celular Transformada , Proliferação de Células , Colágeno/imunologia , Modelos Animais de Doenças , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Sódio/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regulação para Cima
20.
Comput Struct Biotechnol J ; 23: 3342-3347, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39310277

RESUMO

NTT4 is one of the neutral amino acid transporters that regulate neural concentration of precursors for glutamate biosynthesis. Here, we provide insight into the structure of NTT4 and rationalize substrate selectivity. Furthermore, we demonstrate how the mutations associated with mental disabilities imply malfunction of the transporter at the molecular level. We also compared the structures of NTT4 and B0AT2 (SLC6A15), which is a close homolog, sharing 66 % of the common amino acids. Our analyses may be useful in the search for compounds that inhibit substrate transport. Moreover, they allow a better understanding of the function of these transporters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA