Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cytokine ; 180: 156634, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810500

RESUMO

BACKGROUND: Serine protease-like (Spl) proteins produced by Staphylococcus (S.) aureus have been associated with allergic inflammation. However, effects of Spls on the epidermal immune response have not been investigated. OBJECTIVES: To assess the epidermal immune response to SplA, SplD and SplE dependent on differentiation of keratinocytes and a Th2 or Th17 cytokine milieu. METHODS: Human keratinocytes of healthy controls and a STAT3-hyper-IgE syndrome (STAT3-HIES) patient were cultured in different calcium concentrations in the presence of Spls and Th2 or Th17 cytokines. Keratinocyte-specific IL-8 production and concomitant migration of neutrophils were assessed. RESULTS: SplE and more significantly SplA, induced IL-8 in keratinocytes. Suprabasal-like keratinocytes showed a higher Spl-mediated IL-8 production and neutrophil migration compared to basal-like keratinocytes. Th17 cytokines amplified Spl-mediated IL-8 production, which correlated with neutrophil recruitment. Neutrophil recruitment by keratinocytes of the STAT3-HIES patient was similar to healthy control cells. CONCLUSION: S. aureus-specific Spl proteases synergized with IL-17A on human keratinocytes with respect to IL-8 release and neutrophil migration, highlighting the importance of keratinocytes and Th17 immunity in barrier function.


Assuntos
Interleucina-17 , Interleucina-8 , Queratinócitos , Neutrófilos , Staphylococcus aureus , Humanos , Queratinócitos/metabolismo , Queratinócitos/imunologia , Queratinócitos/efeitos dos fármacos , Interleucina-17/metabolismo , Interleucina-8/metabolismo , Staphylococcus aureus/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Células Th17/imunologia , Células Th17/metabolismo , Proteínas de Bactérias/metabolismo , Fator de Transcrição STAT3/metabolismo , Movimento Celular/efeitos dos fármacos , Serina Proteases/metabolismo , Células Cultivadas
2.
Fish Shellfish Immunol ; 154: 109933, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343064

RESUMO

Neutrophils are crucial for defense against numerous infections, and their migration and activations are tightly regulated to prevent collateral tissue damage. We previously performed a neutrophil-specific miRNA overexpression screening and identified several microRNAs, including miR-375, as potent modulators for neutrophil activity. Overexpression of miR-375 decreases neutrophil motility and migration in zebrafish and human neutrophil-like cells. We screened the genes downregulated by miR-375 in zebrafish neutrophils and identified that Cathepsin B (Ctsba) is required for neutrophil motility and chemotaxis upon tail wounding and bacterial infection. Pharmacological inhibition or neutrophil-specific knockout of ctsba significantly decreased the neutrophil chemotaxis in zebrafish and survival upon systemic bacterial infection. Notably, Ctsba knockdown in human neutrophil-like cells also resulted in reduced chemotaxis. Inhibiting integrin receptor function using RGDS rescued the neutrophil migration defects and susceptibility to systemic infection in zebrafish with either miR-375 overexpression or ctsba knockout. Our results demonstrate that miR-375 and its target Ctsba modulate neutrophil activity during tissue injury and bacterial infection in vivo, providing novel insights into neutrophil biology and the overall inflammation process.

3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33397815

RESUMO

Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.


Assuntos
Inflamação/sangue , Rim/metabolismo , Neutrófilos/efeitos da radiação , Pele/efeitos da radiação , Animais , Calgranulina B/genética , Movimento Celular/efeitos da radiação , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Inflamação/etiologia , Inflamação/patologia , Interleucina-17/genética , Rim/lesões , Rim/patologia , Rim/efeitos da radiação , Lipocalina-2/genética , Camundongos , Neutrófilos/metabolismo , Neutrófilos/patologia , Pele/lesões , Raios Ultravioleta/efeitos adversos , Molécula 1 de Adesão de Célula Vascular/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473836

RESUMO

Immunoadsorption (IA) has proven to be clinically effective in the treatment of steroid-refractory multiple sclerosis (MS) relapses, but its mechanism of action remains unclear. We used miniaturized adsorber devices with a tryptophan-immobilized polyvinyl alcohol (PVA) gel sorbent to mimic the IA treatment of patients with MS in vitro. The plasma was screened before and after adsorption with regard to disease-specific mediators, and the effect of the IA treatment on the migration of neutrophils and the integrity of the endothelial cell barrier was tested in cell-based models. The in vitro IA treatment with miniaturized adsorbers resulted in reduced plasma levels of cytokines and chemokines. We also found a reduced migration of neutrophils towards patient plasma treated with the adsorbers. Furthermore, the IA-treated plasma had a positive effect on the endothelial cell barrier's integrity in the cell culture model. Our findings suggest that IA results in a reduced infiltration of cells into the central nervous system by reducing leukocyte transmigration and preventing blood-brain barrier breakdown. This novel approach of performing in vitro blood purification therapies on actual patient samples with miniaturized adsorbers and testing their effects in cell-based assays that investigate specific hypotheses of the pathophysiology provides a promising platform for elucidating the mechanisms of action of those therapies in various diseases.


Assuntos
Esclerose Múltipla , Humanos , Projetos Piloto , Plasma , Neutrófilos , Leucócitos
5.
Biochem Biophys Res Commun ; 650: 87-95, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791546

RESUMO

Abnormal infiltration and activation of neutrophils play a pathogenic role in the development of lupus nephritis (LN). Myeloid-related proteins (MRPs), MRP-8 and -14, also known as the damage-associated molecular patterns (DAMPs), are mainly secreted by activated neutrophils in systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSCs) regulate a variety of immune cells to treat LN, but it is not clear whether MSCs can regulate neutrophils and the expression of MRP-8/14 in LN. Here, we demonstrated that neutrophil infiltration and MRP-8/14 expression were increased in the kidney of MRL/lpr mice and both decreased after MSCs transplantation. Further, the results showed that tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) in MSCs is necessary for MSCs to inhibit MRP-8/14 expression in neutrophils and neutrophil migration. In addition, small-molecule immunosuppressant had no significant effect on the expression of MRP-8/14 in neutrophils. Therefore, our results suggest that MSCs inhibited MRP-8/14 expression and neutrophil migration by secreting TSG-6 in the treatment of LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Células-Tronco Mesenquimais , Camundongos , Animais , Nefrite Lúpica/patologia , Neutrófilos/metabolismo , Camundongos Endogâmicos MRL lpr , Lúpus Eritematoso Sistêmico/patologia
6.
Immunol Cell Biol ; 101(2): 130-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318273

RESUMO

Protein kinase D (PKD) is a serine/threonine kinase family with three isoforms (PKD1-3) that are expressed in most cells and implicated in a wide array of signaling pathways, including cell growth, differentiation, transcription, secretion, polarization and actin turnover. Despite growing interest in PKD, relatively little is known about the role of PKD in immune responses. We recently published that inhibiting PKD limits proinflammatory cytokine secretion and leukocyte accumulation in mouse models of viral infection, and that PKD3 is highly expressed in the murine lung and immune cell populations. Here we focus on the immune-related phenotypes of PKD3 knockout mice. We report that PKD3 is necessary for maximal neutrophil accumulation in the lung following challenge with inhaled polyinosinic:polycytidylic acid, a double-stranded RNA, as well as following influenza A virus infection. Using reciprocal bone marrow chimeras, we found that PKD3 is required in the hematopoietic compartment for optimal neutrophil migration to the lung. Ex vivo transwell and chemokinesis assays confirmed that PKD3-/- neutrophils possess an intrinsic motility defect, partly because of reduced surface expression of CD18, which is critical for leukocyte migration. Finally, the peak of neutrophilia was significantly reduced in PKD3-/- mice after lethal influenza A virus infection. Together, these results demonstrate that PKD3 has an essential, and nonredundant, role in promoting neutrophil recruitment to the lung. A better understanding of the isoform-specific and cell type-specific activities of PKD has the potential to lead to novel therapeutics for respiratory illnesses.


Assuntos
Neutrófilos , Proteína Quinase C , Viroses , Animais , Camundongos , Neutrófilos/metabolismo , Isoformas de Proteínas , Transdução de Sinais , Proteína Quinase C/metabolismo
7.
Curr Top Microbiol Immunol ; 436: 147-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36243843

RESUMO

Phosphoinositide-3-kinases (PI3Ks) are enzymes involved in signalling and modification of the function of all mammalian cells. These enzymes phosphorylate the 3-hydroxyl group of the inositol ring of phosphatidylinositol, resulting in lipid products that act as second messengers responsible for coordinating many cellular functions, including activation, chemotaxis, proliferation and survival. The identification of the functions that are mediated by a specific PI3K isoform is complex and depends on the specific cell type and inflammatory context. In this chapter we will focus on the role of PI3K isoforms in the context of innate immunity, focusing on the mechanisms by which PI3K signalling regulates phagocytosis, the activation of immunoglobulin, chemokine and cytokines receptors, production of ROS and cell migration, and how PI3K signalling plays a central role in host defence against infections and tissue injury.


Assuntos
Imunidade Inata , Fosfatidilinositol 3-Quinases , Animais , Quimiocinas , Inositol , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio , Receptores de Citocinas
8.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401631

RESUMO

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Assuntos
Neutrófilos , Sepse , Humanos , Camundongos , Animais , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Células HEK293 , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Infiltração de Neutrófilos
9.
Cell Immunol ; 376: 104530, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567855

RESUMO

Neutrophils play a prominent role in the inflammatory response and are a critical factor in the pathogenesis of acute lung injury (ALI). Despite a deep understanding of neutrophil accumulation in the pulmonary microvasculature during the process of this disease, the regulatory mechanism of neutrophil recruitment remains unclear. This study aimed to explore the functions and signaling pathways of the purinergic receptor P2Y6 in mediating the innate immune response in ALI. P2Y6-deficient mice, bone marrow chimeras, and neutrophilic chimeras were created in this work to explore the function of P2Y6 in ALI. The results indicated that the extracellular nucleotide UDP was released as a dangerous signal and activated P2Y6 to promote the inflammatory response and pulmonary damage during the process of ALI. P2Y6 deficiency may mitigate deterioration of this disease, including reduced ALI-related inflammatory factor release and immune cell invasion. Bone marrow and neutrophil chimeras and adoptive transfer in mice showed that P2Y6 expression on neutrophils contributed to neutrophil infiltration into lung tissues induced by UDP. Further work indicated that P2Y6 was involved in the neutrophil migration capability through the ErK signaling pathway by mediating the deformation of F-actin filaments and pseudopodia formation during cell recruitment to pulmonary tissue. Here, we provide evidence for the mechanism by which the purinergic receptor P2Y6 contributes to ALI development by regulating neutrophil infiltration into lung tissues. These data indicated that P2Y6 might be a potential therapeutic target for the treatment of this acute severe disease.


Assuntos
Lesão Pulmonar Aguda , Neutrófilos , Lesão Pulmonar Aguda/patologia , Animais , Lipopolissacarídeos/metabolismo , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Difosfato de Uridina/metabolismo
10.
Semin Immunol ; 37: 21-29, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602515

RESUMO

The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating ß2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.


Assuntos
Doenças Autoimunes/imunologia , Complemento C5a/metabolismo , Inflamação/imunologia , Neutrófilos/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Animais , Autoanticorpos/metabolismo , Autoimunidade , Movimento Celular , Modelos Animais de Doenças , Humanos , Leucotrieno B4/metabolismo , Camundongos , Ativação de Neutrófilo , Transdução de Sinais
11.
Purinergic Signal ; 17(3): 371-383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33913070

RESUMO

Nucleotide signaling is a key element of the neutrophil activation pathway. Neutrophil recruitment and migration to injured tissues is guided by purinergic receptor sensitization, mostly induced by extracellular adenosine triphosphate (ATP) and its hydrolysis product, adenosine (ADO), which is primarily produced by the CD39-CD73 axis located at the neutrophil cell surface. In inflammation unrelated to cancer, neutrophil activation via purinergic signaling aims to eliminate antigens and promote an immune response with minimal damage to healthy tissues; however, an antagonistic response may be expected in tumors. Indeed, alterations in purinergic signaling favor the accumulation of extracellular ATP and ADO in the microenvironment of solid tumors, which promote tumor progression by inducing cell proliferation, angiogenesis, and escape from immune surveillance. Since neutrophils and their N1/N2 polarization spectrum are being considered new components of cancer-related inflammation, the participation of purinergic signaling in pro-tumor activities of neutrophils should also be considered. However, there is a lack of studies investigating purinergic signaling in human neutrophil polarization and in tumor-associated neutrophils. In this review, we discussed the human neutrophil response elicited by nucleotides in inflammation and extrapolated its behavior in the context of cancer. Understanding these mechanisms in cancerous conditions may help to identify new biological targets and therapeutic strategies, particularly regarding tumors that are refractory to traditional chemo- and immunotherapy.


Assuntos
Neoplasias/metabolismo , Neutrófilos/metabolismo , Nucleotídeos/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Neoplasias/patologia , Neutrófilos/patologia
12.
Inflammopharmacology ; 29(6): 1829-1833, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34792671

RESUMO

Ouabain is a cardiac steroid hormone with immunomodulatory effects. It inhibits neutrophils migration induced by different stimuli, but little is known about the mechanisms involved in this effect. Thus, the aim of this study was to evaluate the ouabain effect on chemotactic signaling pathways in neutrophils. For that, mice neutrophils were isolated from bone marrow, treated with ouabain (1, 10, and 100 nM) for 2 h, submitted to transwell chemotaxis assay and flow cytometry analysis of Akt, ERK, JNK, and p38 phosphorylation induced by zymosan. Ouabain treatment (1, 10 and, 100 nM) reduces neutrophil chemotaxis induced by chemotactic peptide fMLP, but this substance did not inhibit Akt, ERK, and JNK activation induced by zymosan. However, ouabain (1 and 10 nM) reduced p38 phosphorylation in zymosan-stimulated neutrophils. These results suggest that ouabain may interfere in neutrophil migration through p38 MAPK inhibition.


Assuntos
Neutrófilos/efeitos dos fármacos , Ouabaína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Citometria de Fluxo , Camundongos , Neutrófilos/metabolismo , Ouabaína/administração & dosagem , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065427

RESUMO

Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bambusa/química , Extratos Vegetais/uso terapêutico , Sequência de Aminoácidos , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Células MCF-7 , Masculino , Camundongos , Células NIH 3T3 , Extratos Vegetais/administração & dosagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
J Infect Dis ; 221(9): 1542-1553, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31783409

RESUMO

BACKGROUND: Liver X receptors (LXRs) are nuclear receptors activated by oxidized lipids and were previously implicated in several metabolic development and inflammatory disorders. Although neutrophils express both LXR-α and LXR-ß, the consequences of their activation, particularly during sepsis, remain unknown. METHODS: We used the model of cecal ligation and puncture (CLP) to investigate the role of LXR activation during sepsis. RESULTS: In this study, we verified that LXR activation reduces neutrophil chemotactic and killing abilities in vitro. Mice treated with LXR agonists showed higher sepsis-induced mortality, which could be associated with reduced neutrophil infiltration at the infectious foci, increased bacteremia, systemic inflammatory response, and multiorgan failure. In contrast, septic mice treated with LXR antagonist showed increased number of neutrophils in the peritoneal cavity, reduced bacterial load, and multiorgan dysfunction. More important, neutrophils from septic patients showed increased ABCA1 messenger ribonucleic acid levels (a marker of LXR activation) and impaired chemotactic response toward CXCL8 compared with cells from healthy individuals. CONCLUSIONS: Therefore, our findings suggest that LXR activation impairs neutrophil functions, which might contribute to poor sepsis outcome.


Assuntos
Receptores X do Fígado/metabolismo , Neutrófilos/patologia , Sepse/imunologia , Sepse/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adulto , Animais , Ceco/microbiologia , Ceco/cirurgia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Interleucina-8/metabolismo , Ligadura , Receptores X do Fígado/agonistas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/microbiologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Punções , Sepse/microbiologia
15.
Biochem Biophys Res Commun ; 529(3): 839-845, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32616311

RESUMO

Sepsis-associated encephalopathy (SAE) is a devastating neurological complication of sepsis with intolerable high motility. SAE is accompanied with brain vascular injury, endothelial hyperpermeability, and neutrophil infiltration into the brain tissue, key inflammatory processes leading to further brain edema and neuronal cell apoptosis. Recent studies from us and others suggest that the chemokine receptor C-X-C Motif Chemokine Receptor 2 (CXCR2) is crucial for neutrophil recruitment during SAE. Here we use CXCR2 antagonist SB225002 to characterize the role of CXCR2 in brain infiltration of neutrophil in a murine model of SAE. Systemic administration of high-dose LPS (10 mg/kg) induced evident neutrophil infiltration into the cerebral cortex in wild-type mice. However, CXCR2 antagonist SB225002 markedly attenuated neutrophil infiltration into brain. The CXCR2 expression on neutrophils in the peripheral circulation was dramatically downregulated in response to this LPS dose, and endothelial CXCR2 was significantly upregulated, suggesting endothelial but not neutrophil CXCR2 plays a more important role in neutrophil infiltration into brain. Strikingly, although these CXCR2 antagonist SB225002 treated mice displayed reduced neutrophil infiltration, no change in neutrophil rolling and adhesion was observed. Furthermore, we confirmed that CXCR2 agonist CXCL1 induced a marked increase in actin stress fiber synthesis and paracellular gap formation in cultured cerebral endothelial cells, which is attenuated by SB225002. Thus, these results demonstrate a selective role for endothelial CXCR2 to regulate cerebral vascular permeability and neutrophil transmigration in high-dose LPS induced neuroinflammation, and also suggest a therapeutic potential of CXCR2 antagonist SB225002 in SAE.


Assuntos
Anti-Inflamatórios/uso terapêutico , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Compostos de Fenilureia/uso terapêutico , Receptores de Interleucina-8B/antagonistas & inibidores , Encefalopatia Associada a Sepse/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Edema Encefálico , Linhagem Celular , Modelos Animais de Doenças , Lipopolissacarídeos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Receptores de Interleucina-8B/imunologia , Encefalopatia Associada a Sepse/imunologia
16.
J Theor Biol ; 504: 110386, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32653321

RESUMO

Directed motility of eukaryotic cells requires the polarization of the actomyosin cytoskeleton. In many cell types the polar alignment of the actomyosin cytoskeleton occurs in response to a front-rear symmetry break of active Rho GTPase. Experimental evidence in neutrophils indicates that membrane tension plays an important role in the confinement of active Rac to the front domain. We suggest a mechanochemical model for polarization, including Rho GTPase mediated actomyosin cytoskeleton dynamics and changes in membrane tension as an upstream controller of Rho GTP that reflects this observation. The model comprises the Rho GTPases Rac and RhoA which can become activated in response to external signals. The active states regulate the actomyosin mechanics. The model cell is considered as a thin, effectively two dimensional, sheet adhering to a flat substrate. Morphological changes of the actomyosin cytoskeleton induce changes in membrane tension. We numerically show that the model exhibits key features of neutrophil polarization. The model accounts for a simple mechanochemical circuit with the ability to generate robust polarity patterns, wherein cell mechanics serve as a long range signal transmitter.


Assuntos
Citoesqueleto , Proteínas rho de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Actomiosina , Movimento Celular , Polaridade Celular , Citoesqueleto/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
17.
Inflammopharmacology ; 28(3): 787-793, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31087249

RESUMO

Ouabain, a hormone that inhibits Na+/K+-ATPase, modulates many aspects of the inflammatory response. It has been previously demonstrated that ouabain inhibits neutrophil migration in several inflammation models in vivo, but little is known about the mechanisms underlying this effect. Thus, this work aimed to evaluate the effect of ouabain on molecules related to neutrophil migration. For this purpose, neutrophils obtained from mouse bone marrow were treated with ouabain (1, 10, and 100 nM) in vitro. Neutrophil viability was assessed by annexin V/propidium iodide staining. Ouabain treatment did not affect neutrophil viability at different times (2, 4, and 24 h). However, basal neutrophil viability was decreased after 4 h. Thus, we assessed the effect of ouabain on the adhesion molecule CD18, an integrin ß2 chain protein, and on the chemokine receptor CXCR2 after 2 h of treatment. CD18 expression was reduced (by 30%) by 1 nM ouabain. However, the expression of CXCR2 on the neutrophil membrane was not affected by ouabain treatment (1, 10, and 100 nM). Moreover, ouabain (1, 10, and 100 nM) did not modulate the zymosan-induced secretion of CXCL1 (a chemokine receptor CXCR2 ligand) in macrophage cultures. These data suggest that the inhibitory effect of ouabain on neutrophil migration is related to reduced CD18 expression, indicating a novel mechanism of action.


Assuntos
Antígenos CD18/metabolismo , Neutrófilos/efeitos dos fármacos , Ouabaína/farmacologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Neutrófilos/metabolismo
18.
Immunology ; 157(2): 173-184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013364

RESUMO

Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.


Assuntos
Adesão Celular/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Interleucina-8/imunologia , Neutrófilos/imunologia , Células Endoteliais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/patologia , Peptídeos/imunologia
19.
Trends Immunol ; 37(5): 273-286, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27055913

RESUMO

Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration.


Assuntos
Movimento Celular/imunologia , Imunidade Inata , Ativação de Neutrófilo , Neutrófilos/imunologia , Migração Transendotelial e Transepitelial , Animais , Endotélio Vascular/fisiologia , Humanos , Inflamação
20.
Phytother Res ; 33(4): 929-938, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30618097

RESUMO

Zingiber zerumbet rhizome has been used in traditional medicine mainly for the treatment of various immune-inflammatory related ailments and has been shown to exhibit a wide spectrum of biological effects especially antioxidant and anti-inflammatory activities. The present study was aimed to investigate the immunosuppressive effects of the standardized 80% ethanol extract of Z. zerumbet at 100, 200, and 400 mg/kg on the innate immune responses in male Wistar rats. The immune parameters determined were chemotaxis of neutrophils, Mac-1 expression, engulfment of Escherichia coli by neutrophils, reactive oxygen species production, and plasma lysozyme and ceruloplasmin levels. Zerumbone was qualitatively and quantitatively determined in the extract by using a validated reversed-phase HPLC, whereas liquid chromatography tandem-mass spectrometry (LC -MS/MS) was used to profile the secondary metabolites. Z. zerumbet significantly inhibited the migration of neutrophils, expressions of CD11b/CD18 integrin, phagocytic activity, and production of reactive oxygen species in a dose-dependent manner. The extract also dose-dependently inhibited the expressions of lysozyme and ceruloplasmin in the rat plasma. Z. zerumbet extract possessed strong inhibitory effects on the innate immune responses and has potential to be developed into an effective immunosuppressive agent.


Assuntos
Imunidade Inata/efeitos dos fármacos , Imunossupressores/farmacologia , Extratos Vegetais/farmacologia , Zingiberaceae/química , Animais , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA