RESUMO
We investigated the electrostatic behavior of ferroelectric liquid droplets exposed to the pyroelectric field of a lithium niobate ferroelectric crystal substrate. The ferroelectric liquid is a nematic liquid crystal, in which almost complete polar ordering of the molecular dipoles generates an internal macroscopic polarization locally collinear to the mean molecular long axis. Upon entering the ferroelectric phase by reducing the temperature from the nematic phase, the liquid crystal droplets become electromechanically unstable and disintegrate by the explosive emission of fluid jets. These jets are mostly interfacial, spreading out on the substrate surface, and exhibit fractal branching out into smaller streams to eventually disrupt, forming secondary droplets. We understand this behavior as a manifestation of the Rayleigh instability of electrically charged fluid droplets, expected when the electrostatic repulsion exceeds the surface tension of the fluid. In this case, the charges are due to the bulk polarization of the ferroelectric fluid, which couples to the pyroelectric polarization of the underlying lithium niobate substrate through its fringing field and solid-fluid interface coupling. Since the ejection of fluid does not neutralize the droplet surfaces, they can undergo multiple explosive events as the temperature decreases.
RESUMO
Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which play an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle limit its capability in confining light into nanoscales, thereby restricting its application in nanophotonics. Here, we exploit nanocavities formed by second-order circular Bragg gratings, which support resonant anapole modes, to achieve a 42â¯000-fold enhanced second-harmonic generation in thin-film lithium niobate. The nanocavity exhibits a record-high normalized conversion efficiency of 1.21 × 10-2 cm2/GW under the pump intensity of 1.9 MW/cm2. Besides, we also show s- and p-polarization-independent second-harmonic generation in elliptical Bragg nanocavities. This work could inspire the study of nonlinear optics at the nanoscale on thin-film lithium niobate, as well as other novel photonic platforms.
RESUMO
Electrically reconfigurable nonlinear metasurfaces provide dynamic control over nonlinear phenomena such as second-harmonic generation (SHG), unlocking novel applications in signal processing, light switching, and sensing. Previous methods, like electric-field-induced SHG in plasmonic metasurfaces and Stark-tuned nonlinearities in quantum well metasurfaces, face limitations due to weak SHG responses from metals and mid-infrared constraints of quantum wells, respectively. Addressing the need for efficient SHG control in the visible and near-infrared ranges, we present a novel approach using the electro-optic (EO) effect to modulate SHG. By leveraging the exceptional EO and SHG properties of lithium niobate (LN), we integrate the EO effect with SHG within a metasurface framework for the first time. Our LN metasurface achieves an 11.3% modulation depth in SHG amplitude under a ±50 V alternating voltage. These results open new avenues for reconfigurable photonic applications. including tunable nonlinear light sources, quantum optics, and nonlinear information processing.
RESUMO
We report the second harmonic generation (SHG) response from a single 34 nm diameter lithium niobate nanoparticle. The experimental setup involves a first beam devoted to the optical trapping of single nanoparticles, whereas a second arm involves a femtosecond laser source leading to the SHG emission from the trapped nanoparticles. SHG operation where one to three nanoparticles are present in the optical trap is first demonstrated, highlighting the transition between coherent and incoherent SHG, the latter known as hyper-Rayleigh scattering (HRS). With a spatial light modulator moving the optical trap in and out of the focus of the femtosecond beam, the SHG intensity is switched back and forth between a low and a high level. This controlled operation opens new avenues for nanoparticle characterization and applications in sensing or communication and information technologies and constitutes the first step in the design of active substrateless metasurfaces.
RESUMO
Surface acoustic waves are a powerful tool for controlling quantum systems, including quantum dots (QDs), where the oscillating strain field can modulate the emission wavelengths. We integrate InAsP/InP nanowire QDs onto a thin-film lithium niobate platform and embed them within Si3N4-loaded waveguides. We achieve a 0.70 nm peak-to-peak wavelength modulation at 13 dBm using a single focused interdigital transducer (FIDT) operating at 400 MHz, and we double this amplitude to 1.4 nm by using two FIDTs as an acoustic cavity. Additionally, we independently modulate two QDs with an initial wavelength difference of 0.5 nm, both integrated on the same chip. We show that their modulated emissions overlap, demonstrating the potential to bring them to a common emission wavelength after spectral filtering. This local strain-tuning represents a significant step toward generating indistinguishable single photons from remote emitters heterogeneously integrated on a single chip, advancing on-chip quantum information processing with multiple QDs.
RESUMO
A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.
RESUMO
Piezo-optomechanics presents a promising route to convert microwave signals to the optical domain, implementing processing tasks that are challenging using conventional electronics. The surge of integrated photonics facilitates the exploitation of localized light-sound interactions toward new technological paradigms. However, efficient acousto-optic interaction has yet to be fully exploited in silicon due to the absence of piezoelectricity, despite its maturity in photonic integrated circuits. Here, we introduce a distinctive acousto-optic scheme to supplement silicon photonic devices through heterogeneous integration with lithium niobate (LN). Utilizing LN as an efficient acoustic pump to harness the inherently exceptional photoelasticity in silicon, we demonstrate efficient microwave-to-acoustic transduction, ultimately achieving a modulation figure-of-merit of VπL â¼ 0.496 V·cm. This efficient modulation scheme is further extended to implement non-reciprocal intermodal modulation. The proposed hybrid integration route opens new possibilities for tailoring photon-phonon interactions in silicon, consolidating acousto-optic technology in multifunctional integrated photonics.
RESUMO
Ferroelectric materials exhibit switchable spontaneous polarization below Curie's temperature, driven by octahedral distortions and rotations, as well as ionic displacements. The ability to manipulate polarization coupled with persistent remanence, drives diverse applications, including piezoelectric devices. In the last two decades, nanoscale exploration has unveiled unique material properties influenced by morphology, including the capability to manipulate polarization, patterns, and domains. This paper focuses on the characterization of nanometric sodium niobate (SN) synthesized from metallic niobium through alkali hydrothermal treatment, utilizing electron microscopy techniques, including high-resolution differential phase contrast (DPC) in scanning transmission electron microscopy (STEM). The material exhibits a nanoribbon structure forming a tree root-like network. The study identifies crystallographic phase, atomic columns displacement directions, and surface features, such as exposed planes and the absence of particular atomic columns. The high sensitivity of integrated DPC images proves crucial in overcoming observational challenges in other STEM modes. These observations are essential for potential applications in electronic, photocatalytic, and chemical reaction contexts.
RESUMO
Over the last decades, notable progress is achieved in (K, Na)NbO3 (KNN)-based lead-free piezoceramics. However, more studies are conducted to increase its piezoelectric charge coefficient (d33). For actuator applications, piezoceramics need high electric-field induced strain under low electric fields while maintaining exceptional temperature stability across a wide temperature range. In this study, this work developes Li/Sb-codoped KNN (LKNNS) ceramics with high electrostrain by defect engineering and domain engineering. A remarkable strain of 0.43%, along with a giant d33* value of 2177 pm V-1, is attained in the LKNNS ceramic at 20 kV cm-1. The ceramic exhibits a minimal performance decrease of less than 15% over a temperature range from room temperature to 150 °C. The exceptional strain is attributed to the presence of A-site vacancy-oxygen vacancy ( V A ' - V O ⢠⢠${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ ) defect dipoles and the increase in nano-domains. The hierarchical domain configuration and V A ' - V O ⢠⢠${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ defect dipoles impede the switched domains from reverting to their original state as temperature increases, furthermore, the elongated dipole moments of V A ' - V O ⢠⢠${\mathrm{V}}_{\mathrm{A}}^{{\prime}}{\mathrm{ - V}}_{\mathrm{O}}^{{\mathrm{ \bullet \bullet }}}$ caused by rising temperatures compensate for strain reduction results in exceptional temperature stability. This study provides a model for designing piezoelectric materials with exceptional overall performance under low electric fields and across a wide temperature range.
RESUMO
Manipulating the water evaporation dynamics is a prerequisite in various modern-day applications like DNA stretching, rapid disease diagnostics, and inkjet printing. One method to affect the evaporation dynamics of droplets is to externally apply electric fields. However, surfaces that bear an intrinsic surface charge have not yet been investigated with respect to their evaporation behavior. In this study, we investigate water droplet evaporation on lithium niobate (LN), a ferroelectric material with a very high spontaneous polarization of 0.7 C / m 2 ${C/{m}^{2}}$ . Our results show that a droplet deposited on an LN surface evaporates in three stages: (i)â constant contact radius (ii)â mixed phase (iii)â stick-slip, which is likely originating from the intrinsic surface charge. The influence of the polarization direction of the LN surface as well as the relative humidity of the environment on various evaporation characteristics were studied. The results suggest that the specific adsorption layers forming on charged surfaces, e. g. from the humidity of the surrounding air, play a key role in the evaporation process. Furthermore, compared to other materials with similar contact angles, LN demonstrated a significantly large evaporation rate. This property might also be attributed to the intrinsic surface charge and could be exploited in heat transfer applications.
RESUMO
This study explored the synthesis and sintering of potassium sodium niobate (KNN) nanoparticles, emphasizing morphology, crystal structure, and sintering methods. The as-synthesized KNN nanoparticles exhibited a spherical morphology below 200 nm. Solid state sintering (SSS) and laser-induced shockwave sintering (LISWS) were compared, with LISWS producing denser microstructures and improved grain growth. Raman spectroscopy and x-ray diffraction confirmed KNN perovskite structure, with LISWS demonstrating higher purity. High-resolution x-ray photoelectron spectroscopy spectra indicated increased binding energies in LISWS, reflecting enhanced density and crystallinity. Dielectric and loss tangent analyses showed temperature-dependent behavior, with LISWS-3 exhibiting superior properties. Antenna performance assessments revealed LISWS-3's improved directivity and reduced sidelobe radiation compared to SSS, attributed to its denser microstructure. Overall, LISWS proved advantageous for enhancing KNN ceramics, particularly in antenna applications.
RESUMO
Water contamination by agricultural chemicals is a pressing environmental issue today. Carbendazim (CBZ), a potent fungicide with broad-spectrum antifungal properties and significant toxicity, poses substantial risks to ecosystems and human health. This study introduces an advanced electrochemical sensor by modifying screen-printed carbon electrodes (SPCEs) with a nanocomposite of erbium niobate (Er3NbO7) and functionalized carbon nanofibers (f-CNF). The Er3NbO7/f-CNF nanocomposite enhances electrochemical performance through its high surface area, excellent electrical conductivity, and catalytic activity. This synergy results in exceptional attributes such as a low detection limit of 6.0 nmolL-1, low quantification limit of 19.98 nmolL-1, sensitivity of 3.522 µAµ(molL-1)-1.cm-2, and precision of 0.05%. The sensor demonstrates a wide linear range from 0.2 to 222 µmolL-1, combined with high selectivity and robust stability, making it suitable for precise CBZ detection. Successful deployment in environmental monitoring underscores its versatility and effectiveness in safeguarding human health and ecological balance, establishing it as a pivotal tool in environmental protection efforts.
RESUMO
A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and accuracy, showing that during the ranges of 0-10 GHz, 3-15 GHz, and 12-18 GHz, the average measurement errors are 26.9 MHz, 44.57 MHz, and 13.6 MHz, respectively, thanks to the stacked integrated learning models. Moreover, this system is still able to respond to microwave signals of as low as -30 dBm with the frequency measurement error of 62.06 MHz, as that low half-wave voltage for the phase modulator effectively improves the sensitivity of the system. The general-purpose, miniaturized, reconfigurable, instantaneous frequency measurement modules have unlimited potential in areas such as radar detection and early warning reception.
RESUMO
Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 µW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g.
RESUMO
Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.
RESUMO
Complex polarization states of photon pairs are indispensable in various quantum technologies. Conventional methods for preparing desired two-photon polarization states are realized through bulky nonlinear crystals, which can restrict the versatility and tunability of the generated quantum states due to the fixed crystal nonlinear susceptibility. Here we present a solution using a nonlinear metasurface incorporating multiplexed silica metagratings on a lithium niobate film of 300 nm thickness. We fabricate two orthogonal metagratings on a single substrate with an identical resonant wavelength, thereby enabling the spectral indistinguishability of the emitted photons, and we demonstrate in experiments that the two-photon polarization states can be shaped by the metagrating orientation. Leveraging this essential property, we formulate a theoretical approach for generating arbitrary polarization-entangled qutrit states by combining three metagratings on a single metasurface, allowing the encoding of the desired quantum states or information. Our findings enable miniaturized optically controlled quantum devices by using ultrathin metasurfaces as polarization-entangled photon sources.
RESUMO
An integrated way to generate and manipulate higher-order Poincaré sphere beams (HOPBs) is a sought-after goal in photonic integrated circuits for high-capacity communication systems. Here, we demonstrate a novel method for on-chip generation and manipulation of HOPBs through combining metasurface with optical waveguides on lithium niobate on insulator platform. With phase modulation by a diatomic geometric metasurface, guided waves are extracted into free space with a high signal-to-noise ratio in the form of two orthogonal circularly polarized optical vortices which are linearly superposed into HOPBs. Meanwhile, a dual-port waveguide crossing is established to reconfigure the output states into an arbitrary point on a higher-order Poincaré sphere based on in-plane interference of two guided waves. Our approach provides a promising solution to generate and manipulate the HOPBs in a compact manner, which would be further enhanced by employing the electro-optical modulation on a lithium niobate waveguide to access a fully tunable scheme.
RESUMO
On-chip light sources are an essential component of scalable photonic integrated circuits (PICs), and coupling between light sources and waveguides has attracted a great deal of attention. Photonic waveguides based on bound states in the continuum (BICs) allow optical confinement in a low-refractive-index waveguide on a high-refractive-index substrate and thus can be employed for constructing PICs. In this work, we experimentally demonstrated that the photoluminescence (PL) from a monolayer of tungsten sulfide (WS2) could be coupled into a BIC waveguide on a lithium-niobate-on-insulator (LNOI) substrate. Using finite-difference time-domain simulations, we numerically obtained a coupling efficiency of â¼2.3% for an in-plane-oriented dipole and a near-zero loss at a wavelength of 620 nm. By breaking through the limits of 2D-material integration with conventional photonic architectures, our work offers a new perspective for light-matter coupling in monolithic PICs.
RESUMO
The demand for large electromechanical performance in lead-free polycrystalline piezoelectric thin films is driven by the need for compact, high-performance microelectromechanical systems (MEMS) based devices operating at low voltages. Here we significantly enhance the electromechanical response in a polycrystalline lead-free oxide thin film by utilizing lattice-defect-induced structural inhomogeneities. Unlike prior observations in mismatched epitaxial films with limited low-frequency enhancements, we achieve large electromechanical strain in a polycrystalline (K,Na)NbO3 film integrated on silicon. This is achieved by inducing self-assembled Nb-rich planar faults with a nonstoichiometric composition. The film exhibits an effective piezoelectric coefficient of 565 pm V-1 at 1 kHz, surpassing those of lead-based counterparts. Notably, lattice defect growth is substrate-independent, and the large electromechanical response is extended to even higher frequencies in a polycrystalline film. Improved properties arise from unique lattice defect morphology and frequency-dependent relaxation behavior, offering a new route to remarkable electromechanical response in polycrystalline thin films.
RESUMO
Lithium niobate, because of its nonlinear and electro-optical properties, is one of the materials of choice for photonic applications. The development of nanostructuring capabilities of thin film lithium niobate (TFLN) permits fabrication of small footprint, low-loss optical circuits. With the recent implementation of on-chip single-photon detectors, this architecture is among the most promising for realizing on-chip quantum optics experiments. In this Letter, we report on the implementation of superconducting nanowire single-photon detectors (SNSPDs) based on NbTiN on 300 nm thick TFLN ridge nano-waveguides. We demonstrate a waveguide-integrated wavelength meter based on the photon energy dependence of the superconducting detectors. The device operates at the telecom C- and L-bands and has a footprint smaller than 300 × 180 µm2 and critical currents between â¼12 and â¼14 µA, which ensures operation with minimum heat dissipation. Our results hold promise for future densely packed on-chip wavelength-multiplexed quantum communication systems.