Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069896

RESUMO

For the early diagnosis of several diseases, various biomarkers have been discovered and utilized through the measurement of concentrations in body fluids such as blood, urine, and saliva. The most representative analytical method for biomarker detection is an immunosensor, which exploits the specific antigen-antibody immunoreaction. Among diverse analytical methods, surface plasmon resonance (SPR)-based immunosensors are emerging as a potential detection platform due to high sensitivity, selectivity, and intuitive features. Particularly, SPR-based immunosensors could detect biomarkers without labeling of a specific detection probe, as typical immunosensors such as enzyme-linked immunosorbent assay (ELISA) use enzymes like horseradish peroxidase (HRP). In this review, SPR-based immunosensors utilizing noble metals such as Au and Ag as SPR-inducing factors for the measurement of different types of protein biomarkers, including viruses, microbes, and extracellular vesicles (EV), are briefly introduced.


Assuntos
Metais/química , Ressonância de Plasmônio de Superfície/instrumentação , Bactérias/isolamento & purificação , Biomarcadores/análise , Vesículas Extracelulares/química , Proteínas/análise
2.
Anal Chim Acta ; 1171: 338665, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34112440

RESUMO

Colorimetric localized surface plasmon resonance (LSPR) as analytical response is applied for a wide number of chemical sensors and biosensors. However, the dependence of different factors, such as size distribution of nanoparticles (NPs), shape, dielectric environment, inter-particle distance and matrix, among others, can provide non-reliable results by UV-vis spectrometry in complex matrices if NP assessment is not carried out, particularly at low levels of analyte concentrations. Miniaturized liquid chromatography, capillary (CapLC) and nano (NanoLC), coupled on line with in-tube solid phase microextraction (IT-SPME) is proposed for the first time for both, controlling suitability of used noble metal NP dispersions and developing plasmonic assays. Several capped noble NPs and target analytes were tested from variations in the chromatographic profiles obtained by using diode array detection. The IT-SPME step, which influenced the chromatographic fingerprint provided by noble NP dispersions, was studied by asymmetrical flow field flow fractionation (AF4) too. We monitored NP aggregation induced by interaction with several analytes like acids and spermine (SPN). Assessment of NPs was achieved in less than 10 min and it permitted to develop suitable plasmonic tests. Here, it was also demonstrated that these assays can be followed by IT-SPME-miniaturized LC-DAD and more sensitivity and selectivity than those provided by UV-Vis spectrometry were achieved. Analysing urine samples to determine SPN as a cancer biomarker as a proof of concept is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA