Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cogn Neuropsychol ; 34(1-2): 42-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353390

RESUMO

The ineffective exclusion of surrounding noise has been proposed to underlie the reading deficits in developmental dyslexia. However, previous studies supporting this hypothesis focused on low-level visual tasks, providing only an indirect link of noise interference on reading processes. In this study, we investigated the effect of noise on regular, irregular, and pseudoword reading in 23 dyslexic children and 26 age- and IQ-matched controls, by applying the white noise displays typically used to validate this theory to a lexical decision task. Reading performance and eye movements were measured. Results showed that white noise did not consistently affect dyslexic readers more than typical readers. Noise affected more dyslexic than typical readers in terms of reading accuracy, but it affected more typical than dyslexic readers in terms of response time and eye movements (number of fixations and regressions). Furthermore, in typical readers, noise affected more the speed of reading of pseudowords than real words. These results suggest a particular impact of noise on the sub-lexical reading route where attention has to be deployed to individual letters. The use of a lexical route would reduce the effect of noise. A differential impact of noise between words and pseudowords may therefore not be evident in dyslexic children if they are not yet proficient in using the lexical route. These findings indicate that the type of reading stimuli and consequent reading strategies play an important role in determining the effects of noise interference in reading processing and should be taken into account by further studies.


Assuntos
Dislexia/patologia , Tempo de Reação/fisiologia , Leitura , Criança , Feminino , Voluntários Saudáveis , Humanos , Masculino
2.
J Vis ; 15(1): 15.1.8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589292

RESUMO

Developmental dyslexia (DD) is the most common neurodevelopmental disorder (about 10% of children across cultures) characterized by severe difficulties in learning to read. According to the dominant view, DD is considered a phonological processing impairment that might be linked to a cross-modal, letter-to-speech sound integration deficit. However, new theories-supported by consistent data-suggest that mild deficits in low-level visual and auditory processing can lead to DD. This evidence supports the probabilistic and multifactorial approach for DD. Among others, an interesting visual deficit that is often associated with DD is excessive visual crowding. Crowding is defined as difficulty in the ability to recognize objects when surrounded by similar items. Crowding, typically observed in peripheral vision, could be modulated by attentional processes. The direct consequence of stronger crowding on reading is the inability to recognize letters when they are surrounded by other letters. This problem directly translates to reading at a slower speed and being more prone to making errors while reading. Our aim is to review the literature supporting the important role of crowding in DD. Moreover, we are interested in proposing new possible studies in order to clarify whether the observed excessive crowding could be a cause rather than an effect of DD. Finally, we also suggest possible remediation and even prevention programs that could be based on reducing the crowding in children with or at risk for DD without involving any phonological or orthographic training.


Assuntos
Aglomeração , Dislexia/fisiopatologia , Leitura , Percepção Visual/fisiologia , Humanos , Aprendizagem
3.
Front Psychol ; 11: 958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581906

RESUMO

Many studies have suggested that children with developmental dyslexia (DD) not only show phonological deficit but also have difficulties in visual processing, especially in non-alphabetic languages such as Chinese. However, mechanisms underlying this impairment in vision are still unclear. Visual magnocellular deficit theory suggests that the difficulties in the visual processing of dyslexia are caused by the dysfunction of the magnocellular system. However, some researchers have pointed out that previous studies supporting the magnocellular theory did not control for the role of "noise". The visual processing difficulties of dyslexia might be related to the noise exclusion deficit. The present study aims to examine these two possible explanations via two experiments. In experiment 1, we recruited 26 Chinese children with DD and 26 chronological age-matched controls (CA) from grades 3 to 5. We compared the Gabor contrast sensitivity between the two groups in high-noise and low-noise conditions. Results showed a significant between-group difference in contrast sensitivity in only the high-noise condition. In experiment 2, we recruited another 29 DD and 29 CA and compared the coherent motion/form sensitivity in the high- and low-noise conditions. Results also showed that DD exhibited lower coherent motion and form sensitivities than CA in the high-noise condition, whereas no evidence was observed that the group difference was significant in the low-noise condition. These results suggest that Chinese children with dyslexia have noise exclusion deficit, supporting the noise exclusion hypothesis. The present study provides evidence for revealing the visual dysfunction of dyslexia from the Chinese perspective. The nature of the perceptual noise exclusion and the relationship between the two theoretical hypotheses are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA