Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Microbiology (Reading) ; 168(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35113781

RESUMO

Vibrio cholerae O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The ctxAB and tcpA genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and Vibrio pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of V. cholerae O1 and O139. V. cholerae isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic V. cholerae non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of V. cholerae O1 strains, including organization of the VPI-1 locus, ctxAB, tcpA and toxT genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed ΔtoxT, ΔtoxR and ΔtoxTΔtoxR deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the toxT and toxR genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either toxT or toxR gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 ΔtoxR mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic V. cholerae non-O1/non-O139 strain.


Assuntos
Cólera , Vibrio cholerae não O1 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Filogenia , Vibrio cholerae não O1/metabolismo , Virulência/genética
2.
Appl Environ Microbiol ; 88(17): e0115822, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36000870

RESUMO

Vibrio cholerae is a ubiquitously distributed human pathogen that naturally inhabits marine and estuarine ecosystems. Two serogroups are responsible for causing cholera epidemics, O1 and O139, but several non-O1 and non-O139 V. cholerae (NOVC) strains can induce cholera-like infections. Outbreaks of V. cholerae have previously been correlated with phytoplankton blooms; however, links to specific phytoplankton species have not been resolved. Here, the growth of a NOVC strain (S24) was measured in the presence of different phytoplankton species, alongside phytoplankton abundance and concentrations of dissolved organic carbon (DOC). During 14-day experiments, V. cholerae S24 was cocultured with strains of the axenic phytoplankton species Actinocyclus curvatulus, Cylindrotheca closterium, a Pseudoscourfieldia sp., and a Picochlorum sp. V. cholerae abundances significantly increased in the presence of A. curvatulus, C. closterium, and the Pseudoscourfieldia sp., whereas abundances significantly decreased in the Picochlorum sp. coculture. V. cholerae growth was significantly enhanced throughout the cogrowth experiment with A. curvatulus, whereas when grown with C. closterium and the Pseudoscourfieldia sp., growth only occurred during the late stationary phase of the phytoplankton growth cycle, potentially coinciding with a release of DOC from senescent phytoplankton cells. In each of these cases, significant correlations between phytoplankton-derived DOC and V. cholerae cell abundances occurred. Notably, the presence of V. cholerae also promoted the growth of A. curvatulus and Picochlorum spp., highlighting potential ecological interactions. Variations in abundances of NOVC identified here highlight the potential diversity in V. cholerae-phytoplankton ecological interactions, which may inform efforts to predict outbreaks of NOVC in coastal environments. IMPORTANCE Many environmental strains of V. cholerae do not cause cholera epidemics but remain a public health concern due to their roles in milder gastrointestinal illnesses. With emerging evidence that these infections are increasing due to climate change, determining the ecological drivers that enable outbreaks of V. cholerae in coastal environments is becoming critical. Links have been established between V. cholerae abundance and chlorophyll a levels, but the ecological relationships between V. cholerae and specific phytoplankton species are unclear. Our research demonstrated that an environmental strain of V. cholerae (serogroup 24) displays highly heterogenous interactions in the presence of different phytoplankton species with a relationship to the dissolved organic carbon released by the phytoplankton species. This research points toward the complexity of the interactions of environmental strains of V. cholerae with phytoplankton communities, which we argue should be considered in predicting outbreaks of this pathogen.


Assuntos
Cólera , Vibrio cholerae , Clorofila A , Cólera/epidemiologia , Ecossistema , Humanos , Fitoplâncton
3.
Microb Ecol ; 82(2): 319-333, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33410933

RESUMO

To understand the environmental reservoirs of Vibrio cholerae and their public health significance, we surveyed freshwater samples from rivers in two cities (Jiaxing [JX] and Jiande [JD]) in Zhejiang, China. A total of 26 sampling locations were selected, and river water was sampled 456 times from 2015 to 2016 yielding 200 V. cholerae isolates, all of which were non-O1/non-O139. The average isolation rate was 47.3% and 39.1% in JX and JD, respectively. Antibiotic resistance profiles of the V. cholerae isolates were examined with nonsusceptibility to cefazolin (68.70%, 79/115) being most common, followed by ampicillin (47.83%, 55/115) and imipenem (27.83%, 32/115). Forty-two isolates (36.52%, 42/115) were defined as multidrug resistant (MDR). The presence of virulence genes was also determined, and the majority of the isolates were positive for toxR (198/200, 99%) and hlyA (196/200, 98%) with few other virulence genes observed. The population structure of the V. cholerae non-O1/non-O139 sampled was examined using multilocus sequence typing (MLST) with 200 isolates assigned to 128 STs and 6 subpopulations. The non-O1/non-O139 V. cholerae population in JX was more varied than in JD. By clonal complexes (CCs), 31 CCs that contained isolates from this study were shared with other parts of China and/or other countries, suggesting widespread presence of some non-O1/non-O139 clones. Drug resistance profiles differed between subpopulations. The findings suggest that non-O1/non-O139 V. cholerae in the freshwater environment is a potential source of human infections. Routine surveillance of non-O1/non-O139 V. cholerae in freshwater rivers will be of importance to public health.


Assuntos
Rios , Vibrio cholerae não O1 , Resistência a Múltiplos Medicamentos , Humanos , Tipagem de Sequências Multilocus , Vibrio cholerae não O1/genética , Virulência/genética
4.
Epidemiol Mikrobiol Imunol ; 70(2): 131-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34412489

RESUMO

Non-O1/non-O139 vibrios refer to all vibrios except toxin producing Vibrio cholerae serogroups O1 and O139. The prevalence of illness caused by non-O1/non-O139 vibrios steadily increases all over the world in the last 20 years, which is very probably related to global warming. These infections are reported year-round from tropical and subtropical climate zones, but they were also detected in the mild climate zone of the United States of America and Europe. In mild climate, they have markedly seasonal occurrence, typically peaking in May to October. A human can be infected after ingestion of contaminated food, especially seafood and fish, or water or while bathing. In Europe, non-O1/non-O139 vibrios were detected in the Baltic Sea, North Sea and Mediterranean Sea but also in ponds and rivers. Depending on the pathogen entry route, the clinical manifestation may appear as gastroenteritis, otitis, wound infection or severe up to fatal illness, predominantly in immunocompromised patients. There is no specific prevention. Non-specific prevention includes good personal and food handling hygiene practices and avoiding contact of unhealed wounds with sea or surface swimming water. Given the severity and increasing frequency of infections caused by non-O1/non-O139 vibrios, they should be considered in differential diagnosis of gastrointestinal and wound infections, especially in patients with a history of consumption of fish and seafood or with a history of contact of unhealed wounds with sea or other open swimming water.


Assuntos
Vibrioses/epidemiologia , Vibrio , Europa (Continente)/epidemiologia , Aquecimento Global , Humanos , Estados Unidos/epidemiologia , Vibrio/classificação , Vibrio/crescimento & desenvolvimento , Vibrioses/prevenção & controle
5.
Epidemiol Infect ; 148: e186, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635946

RESUMO

In mainland China, the clinical, epidemiological and genetic features of non-O1/non-O139 Vibrio cholerae (NOVC) bacteraemia have been scarcely investigated. Herein, we describe a patient with NOVC bacteraemia diagnosed in our hospital and present a retrospective analysis of literature reports of 32 other cases in China, detailing the clinical epidemiology, antibiotic resistance and molecular characteristics of isolates. Most patients were male (84.8%; median age, 53 years) and had predisposing factors, such as cirrhosis, malignant tumours, blood diseases and diabetes. In addition to fever, gastroenteritis was the most frequent presenting symptom. The mortality rate during hospitalisation was 12.1%. NOVC bacteraemia cases were more common in June-August, with the majority in coastal provinces and the Yangtze River basin. Only 42.4% of cases were attributed to consumption of marine (aquatic) products. Tetracycline, third-generation cephalosporins, and fluoroquinolones were the most effective antimicrobial agents, and the highest frequencies of resistance were recorded for ampicillin/sulbactam (37.5%), amoxicillin/clavulanic acid (33.3%), ampicillin (29.2%) and sulfamethoxazole (20%). Multi-drug resistant isolates were not detected. Limited data indicate that ctxAB and tcpA genes were absent in all NOVC isolates but other putative virulence genes (hlyA, toxR, hap and rtxA) were common. Ten multilocus sequence types were identified with marked genetic heterogeneity between different isolates. As clinical manifestations of NOVC bacteraemia may vary widely, and isolates exhibit genetic diversity, clinicians and public health experts should be alerted to the possibility of infection with this pathogen because of the high prevalence of liver disease in China.


Assuntos
Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Cólera/sangue , Cólera/complicações , Vibrio cholerae , Idoso , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , China/epidemiologia , Cólera/tratamento farmacológico , Cólera/epidemiologia , Humanos , Masculino
6.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625977

RESUMO

In recent years, global warming has led to a growing number of Vibrio cholerae infections in bathing water users in regions formerly unaffected by this pathogen. It is therefore of high importance to monitor V. cholerae in aquatic environments and to elucidate the main factors governing its prevalence and abundance. For this purpose, rapid and standardizable methods that can be performed by routine water laboratories are prerequisite. In this study, we applied a recently developed multiplex quantitative PCR (qPCR) strategy (i) to monitor the spatiotemporal variability of V. cholerae abundance in two small soda pools and a large lake that is intensively used for recreation and (ii) to elucidate the main factors driving V. cholerae dynamics in these environments. V. cholerae was detected with qPCR at high concentrations of up to 970,000 genomic units 100 ml-1 during the warm season, up to 2 orders of magnitude higher than values obtained by cultivation. An independent cytometric approach led to results comparable to qPCR data but with significantly more positive samples due to problems with DNA recovery for qPCR. Not a single sample was positive for toxigenic V. cholerae, indicating that only nontoxigenic V. cholerae (NTVC) was present. Temperature was the main predictor of NTVC abundance, but the quality and quantity of dissolved organic matter were also important environmental correlates. Based on this study, we recommend using the developed qPCR strategy for quantification of toxigenic and nontoxigenic V. cholerae in bathing waters with the need for improvements in DNA recovery.IMPORTANCE There is a definitive need for rapid and standardizable methods to quantify waterborne bacterial pathogens. Such methods have to be thoroughly tested for their applicability to environmental samples. In this study, we critically tested a recently developed multiplex qPCR strategy for its applicability to determine the spatiotemporal variability of V. cholerae abundance in lakes with a challenging water matrix. Several qPCR protocols for V. cholerae detection have been developed in the laboratory, but comprehensive studies on the application to environmental samples are extremely scarce. In our study, we demonstrate that our developed qPCR approach is a valuable tool but that there is a need for improvement in DNA recovery for complex water matrices. Furthermore, we found that nontoxigenic V. cholerae is present in very high numbers in the investigated ecosystems, while toxigenic V. cholerae is apparently absent. Such information is of importance for public health.


Assuntos
Lagos/microbiologia , Reação em Cadeia da Polimerase Multiplex , Análise Espaço-Temporal , Vibrio cholerae/genética , Microbiologia da Água , DNA Bacteriano/genética , Limite de Detecção , Reação em Cadeia da Polimerase em Tempo Real , Temperatura , Vibrio cholerae/isolamento & purificação
7.
J Pak Med Assoc ; 68(4): 650-652, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29808060

RESUMO

Non 01, Non O139 Vibrio cholerae bacteraemia is a rare but potentially fatal occurrence. There have been very few incidents of this infection from around the world. The treatment regimen of antibiotics also varies in literature. We present a case of bacteraemia caused by Non O1, Non O139 Vibrio cholerae along with associated risk factors, disease manifestations, laboratory diagnosis and treatment regimen. This serves to add additional information regarding symptoms and signs of this infection along with management of patient. Knowledge regarding this topic shall be highly useful to professionals if further cases are detected. In the discussion section, a review of literature of previous cases is also presented.


Assuntos
Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Vibrio cholerae , Bacteriemia/complicações , Humanos , Lactente , Masculino , Sorogrupo
8.
Przegl Epidemiol ; 71(4): 661, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29417804

RESUMO

BACKGROUND: Cholera is an infectious disease that in the epidemic form should not continue to appear now, as is known from the experience of developed countries AIM: The aim of this work is to bring to memory the epidemics of cholera, that were introduced to the territory of Poland, in the past and the role of National Institute of Hygiene (PZH) in the fight against them and to demonstrate contemporary danger from cholera outbreaks that still exists in the world MATERIAL AND METHODS: The information from the historic publications were analyzed, the results Polish research performed in National Institute of Hygiene in the second half of the XX century were collected and demonstrated the most recent information from in the world science publications on the subject of cholera and the conditions that were in the origin of the recent outbreaks of cholera mentioned RESULTS: The data available for the number of cholera victims in the epidemics of XIX century is concerning the persons ill with characteristic clinical symptoms, but the data for XX century is concerning only patients that were infected with by the strain Vibrio cholerae O1 classic type, the bacteria that were described by R. Koch, but from the 70-years of XX century mostly the cases infected with Vibrio cholerae O1 type El-Tor, that was the etiologic agent of the seventh cholera pandemic SUMMARY AND CONCLUSIONS: The origin of the epidemic cholera is depending on several conditions :appearance in water the infectious agent with the toxin producing character, ecological conditions of the surface waters, and on living conditions of human society which might be infected from the source of infection in water. The presence of the infectious agent in the natural waters should be always taken under special consideration car any worsening of living condition of the human population like natural disaster or war, may still create the dangers of the epidemic of infectious disease, as recently has happened with the outbreak of epidemic of cholera in Yemen


Assuntos
Cólera/história , Epidemias/história , Higiene/história , Cólera/microbiologia , Epidemias/estatística & dados numéricos , História do Século XIX , História do Século XX , Humanos , Polônia , Vibrio cholerae O1
9.
Int J Med Microbiol ; 304(7): 843-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129553

RESUMO

Bacteria of the family Vibrionaceae naturally occur in marine and estuarine environments. Only few species of Vibrionaceae are associated with human cases of gastroenteritis, ear and wound infections, caused by ingestion of seafood or contact with Vibrio containing water. Increasing consumption of seafood (fish, fishery products and shellfish) poses a possible source of Vibrio infections in Germany. Additionally, there is a growing concern that abundances of pathogenic vibrios may increase in German coastal waters as a result of e.g. climate change resulting in probably rising surface water temperatures. According to the One Health concept the VibrioNet consortium started in 2010 to investigate the occurrence and relevance of non-cholera vibrios of human concern in Germany. Vibrios from environmental, seafood and clinical sources were analyzed with the aim to find connections between different reservoirs or sources and to identify potential ways of transmission of these pathogens to assess the risk of infections associated with them. Potentially pathogenic strains mostly belong to the species Vibrio parahaemolyticus, Vibrio vulnificus and non-O1/non-O139 Vibrio cholerae. Investigations on imported seafood and mussels from primary production areas confirmed the frequent occurrence of these species. Moreover, studies of German coastal waters and sediments showed the presence and seasonality of these marine bacteria. So far the incidence of clinical cases of vibriosis in Germany is low. Between 1994 and 2013 thirteen cases of Vibrio spp. associated wound infections and/or septicaemia have been reported. However, the high prevalence of vibrios in aquatic environments and aquatic organisms is of concern and demands continued control of food and surveillance for clinical infections with pathogenic vibrios.


Assuntos
Sedimentos Geológicos/microbiologia , Alimentos Marinhos/microbiologia , Vibrioses/microbiologia , Vibrio/classificação , Vibrio/isolamento & purificação , Animais , Alemanha/epidemiologia , Humanos , Vibrioses/epidemiologia
10.
Intern Med J ; 44(5): 508-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816311

RESUMO

This retrospective case series identifies the largest cohort of non-O1, non-O139 Vibrio cholerae bacteraemia in an Australian population from 2000 to 2013. We examine the risk factors, epidemiology, clinical presentations and mortality of non-O1, non-O139 V. cholerae bacteraemia in Victoria and compare them with published cases in the literature. This case series highlights the pathogenic potential of non-O1, non-O139 V. cholerae and identifies possible associations with host (underlying chronic liver disease and malignancy) and environmental factors (contaminated water supply and raw seafood). Clinicians should be aware of the morbidity and mortality associated with invasive non-O1, non-O139 V. cholerae infections, particularly in immunocompromised patients.


Assuntos
Bacteriemia/microbiologia , Vibrio cholerae não O1/isolamento & purificação , Idoso , Idoso de 80 Anos ou mais , Animais , Bacteriemia/epidemiologia , Comorbidade , Culinária , Suscetibilidade a Doenças , Feminino , Microbiologia de Alimentos , Gastroenterite/complicações , Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Ostreidae/microbiologia , Estudos Retrospectivos , Fatores de Risco , Alimentos Marinhos/efeitos adversos , Alimentos Marinhos/microbiologia , Sorotipagem , Natação , Vibrio cholerae não O1/classificação , Vitória/epidemiologia , Microbiologia da Água , Poluição da Água
11.
New Microbes New Infect ; 56: 101200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38162836

RESUMO

Non-O1, non-O139 Vibrio cholerae (NOVC) is an emergent pathogen that mainly causes gastroenteritis. Also, it causes ear, wound infections, and bacteremia but the nervous system is rarely affected. We report on a case of NOVC meningoencephalitis in an infant that recovered after antimicrobial therapy but later presented neurologic sequelae.

12.
Int J Food Microbiol ; 418: 110734, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759293

RESUMO

This study reports a comprehensive epidemiological and genetic analysis of V. cholerae strains, specifically non-O1/non-O139 serogroups, isolated from animal-derived food samples in Guangdong province from 2015 to 2019. A total of 21 V. cholerae strains were obtained, which exhibited high resistance rates for nalidixic acid (57.14 %, 12/21), ampicillin (33.33 %, 7/21), and ciprofloxacin (19.05 %, 4/21). The quinolone resistance-related gene, qnrVC, was prevalent in 80.95 % (17/21) of the isolates. Additionally, chromosomally mediated quinolone-resistance mutations, including mutations in GyrA at position 83 (S83I) and ParC at position 85 (S85L), were detected in 47.62 % of the isolates. The combination of target mutation and qnrVC genes was shown to mediate resistance or intermediate resistance to ciprofloxacin in V. cholerae. Furthermore, an IncC-type conjugative plasmid carrying thirteen antibiotic resistance genes, including genes conferring resistance to two clinically important antibiotics, cephalosporins and fluoroquinolones, was identified in the shrimp-derived strain Vc516. While none of our food isolates harbored the toxigenic CTX- and TCP-encoding genes, they did possess genes encoding toxins such as HlyA and Autoinducer-2. Notably, some V. cholerae strains from this study exhibited a close genetic relationship with clinical strains, suggesting their potential to cause human infections. Taken together, this study provides a comprehensive view of the epidemiological features and genetic basis of antimicrobial resistance and virulence potential of V. cholerae strains isolated from food in southern China, thereby advancing our understanding of this important pathogen.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Microbiologia de Alimentos , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Animais , Humanos , Testes de Sensibilidade Microbiana , Cólera/microbiologia , Cólera/epidemiologia , Vibrio cholerae/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/isolamento & purificação , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/efeitos dos fármacos , Vibrio cholerae não O1/isolamento & purificação , Plasmídeos/genética
13.
Microorganisms ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674762

RESUMO

In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.

14.
Trop Med Infect Dis ; 9(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38787036

RESUMO

Cholera is highly endemic in many sub-Saharan African countries. The bacterium Vibrio cholerae is responsible for this severe dehydrating diarrheal disease that accounts for over 100,000 deaths each year globally. In recent years, the pathogen has been found to invade intestinal layers and translocate into the bloodstream of humans. The non-toxigenic strains of V. cholerae (non-O1/O139), also known as NOVC, which do not cause epidemic or pandemic cases of cholera, are the major culprits of V. cholerae bacteremia. In non-cholera-endemic regions, clinical reports on NOVC infection have been noted over the past few decades, particularly in Europe and America. Although low-middle-income countries are most susceptible to cholera infections because of challenges with access to clean water and inappropriate sanitation issues, just a few cases of V. cholerae bloodstream infections have been reported. The lack of evidence-based research and surveillance of V. cholerae bacteremia in Africa may have significant clinical implications. This commentary summarizes the existing knowledge on the host risk factors, pathogenesis, and diagnostics of NOVC bacteremia.

15.
Infect Drug Resist ; 17: 1147-1152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529069

RESUMO

Background: Urinary tract infection (UTI) caused by V. cholerae is rare and less common. V. cholerae is a Gram-negative bacterium motile using single polar flagellum and, originally, is a waterborne microbe found in aquatic and estuarine environments. Toxigenic V. cholerae is well-known as a causative agent of acute and excessive watery diarrhea after ingesting food and water contaminated with this bacterium. Case Presentation: A 27-year-old male patient presented to the emergency department on 17th July 2021 with burning micturition, normal vital signs, and no fever, vomiting, or diarrhea. In 2017, the patient complained of short stature and vitamin D deficiency. He was on human growth hormone from January 2018 till October 2019. The diagnosis was V. cholerae Non-O1/non-O139 urinary tract infection (UTI). Considering a urinary tract infection, empirical treatment with Lornoxicam and Ciprofloxacin was initiated, while the result of urine culture was still pending. The patient was discharged on the same day and without any complications. Conclusion: V. cholerae non-O1/non-O139 is primarily a marine inhabitant and is associated with sporadic cases resulting in cholera-like diarrhea after consumption of contaminated seafood and exposure to seawater. Extraintestinal infection associated with this bacterium should no longer be ignored as this change in the behavior of cholera bacteria mechanism of pathogenicity might be related to some associated virulence genes.

16.
Infect Genet Evol ; 120: 105587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518953

RESUMO

Non-O1/non-O139 Vibrio cholerae (NOVC) are ubiquitous in aquatic ecosystems. In rare cases, they can cause intestinal and extra-intestinal infections in human. This ability is associated with various virulence factors. The presence of NOVC in German North Sea and Baltic Sea was observed in previous studies. However, data on virulence characteristics are still scarce. Therefore, this work aimed to investigating the virulence potential of NOVC isolated in these two regions. In total, 31 NOVC strains were collected and subjected to whole genome sequencing. In silico analysis of the pathogenic potential was performed based on the detection of genes involved in colonization and virulence. Phenotypic assays, including biofilm formation, mobility and human serum resistance assays were applied for validation. Associated toxin genes (hlyA, rtxA, chxA and stn), pathogenicity islands (Vibrio pathogenicity island 2 (VPI-II) and Vibrio seventh pathogenicity island 2 (VSP-II)) and secretion systems (Type II, III and VI secretion system) were observed. A maximum likelihood analysis from shared core genes revealed a close relationship between clinical NOVCs published in NCBI and environmental strains from this study. NOVC strains are more mobile at 37 °C than at 25 °C, and 68% of the NOVC strains could form strong biofilms at both temperatures. All tested strains were able to lyse erythrocytes from both human and sheep blood. Additionally, one strain could survive up to 60% and seven strains up to 40% human serum at 37 °C. Overall, the genetic virulence profile as well as the phenotypic virulence characteristics of the investigated NOVC from the German North Sea and Baltic Sea suggest potential human pathogenicity.


Assuntos
Vibrio cholerae não O1 , Fatores de Virulência , Fatores de Virulência/genética , Humanos , Virulência/genética , Vibrio cholerae não O1/genética , Vibrio cholerae não O1/patogenicidade , Vibrio cholerae não O1/isolamento & purificação , Alemanha , Ilhas Genômicas/genética , Biofilmes/crescimento & desenvolvimento , Filogenia , Mar do Norte , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Vibrio cholerae/classificação , Cólera/microbiologia , Animais , Sequenciamento Completo do Genoma
17.
Emerg Infect Dis ; 19(3): 464-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23622872

RESUMO

We identified 281 Vibrio cholerae non-O1, non-O139 strains from patients with diarrhea in Kolkata, India. Cholera-like diarrhea was the major symptom (66.0%); some patients (20.3%) had severe dehydration. These strains lacked the ctxA gene but many had hlyA, rtxA, and rtxC genes. Pulsed-field gel electrophoresis showed no genetic link among strains.


Assuntos
Cólera/microbiologia , Diarreia/microbiologia , Vibrio cholerae/genética , Criança , Pré-Escolar , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fezes/microbiologia , Feminino , Genes Bacterianos , Humanos , Índia , Masculino , Filogenia , Vibrio cholerae/classificação , Vibrio cholerae/efeitos dos fármacos
18.
J Food Sci Technol ; 50(3): 496-504, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24425944

RESUMO

Water and post-larvae samples from black tiger (Penaeus monodon) shrimp hatcheries; pond water, pond sediment and shrimp from aquaculture farms were screened for the presence of V. cholerae. A V. cholerae-duplex PCR method was developed by utilizing V. cholerae species specific sodB primers and ctxAB genes specific primers. Incidence of V. cholerae was not observed in shrimp hatchery samples but was noticed in aquaculture samples. The incidence of V. cholerae was higher in pond water (7.6%) than in pond sediment (5.2%). Shrimp head (3.6%) portion had relatively higher incidence than shrimp muscle (1.6%). All the V. cholerae isolates (n = 42) belonged to non-O1/non-O139 serogroup, of which 7% of the V. cholerae isolates were potentially cholera-toxigenic (ctx positive). All the ctx positive V. cholerae (n = 3) were isolated from the pond water. Since, cholera toxin (CT) is the major contributing factor for cholera gravis, it is proposed that the mere presence of non-O1/non-O139 V. cholerae need not be the biohazard criterion in cultured black tiger shrimp but only the presence of ctx carrying non-O1/non-O139 V. cholerae may be considered as potential public health risk.

19.
Pathog Glob Health ; 117(3): 235-244, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35983997

RESUMO

Non-O1/non-O139 Vibrio cholerae (NOVC) are nonpathogenic or asymptomatic colonizers in humans, but they may be related to intestinal or extra-intestinal (severe wound infections or sepsis) infections in immunocompromised patients.The present study aimed to evaluate the weighted pooled resistance (WPR) rates in clinical NOVC isolates based on different years, areas, quality, antimicrobial susceptibility testing (AST), and resistance rates. We systematically searched the articles in PubMed, Scopus, and Embase (until January 2020). Data analyses were performed using the Stata software program (version 17). A total of 16 studies that had investigated 824 clinical NOVC isolates were included in the meta-analysis. The majority of the studies were conducted in Asia (n = 14) and followed by Africa (n = 2). The WPR rates were as follows: erythromycin 10%, ciprofloxacin 5%, cotrimoxazole 27%, and tetracycline 13%. There was an increase in resistance to ciprofloxacin, nalidixic acid, and gentamicin, norfloxacin during the period from 2000 to 2020. On the contrary, there was a decreased resistance to erythromycin, tetracycline, chloramphenicol, cotrimoxazole, ampicillin, streptomycin, kanamycin, and neomycin during the period from 2000 to 2020. The lowest resistance rate were related to gentamicin, kanamycin, ciprofloxacin, and chloramphenicol against NOVC strains. However, temporal changes in antimicrobial resistance rate were found in our study. We established continuous surveillance, careful appropriate AST, and limitations on improper antibiotic usage, which are essential, especially in low-income countries.


Assuntos
Cólera , Vibrio cholerae não O1 , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cólera/tratamento farmacológico , Cólera/epidemiologia , Combinação Trimetoprima e Sulfametoxazol , Farmacorresistência Bacteriana , Ciprofloxacina , Tetraciclina , Cloranfenicol , Canamicina , Eritromicina , Gentamicinas , Testes de Sensibilidade Microbiana
20.
Wien Klin Wochenschr ; 135(21-22): 597-608, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530997

RESUMO

Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.


Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiologia , Áustria/epidemiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA