Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Ther ; 32(8): 2778-2797, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.


Assuntos
Artrite Reumatoide , Isomerases de Dissulfetos de Proteínas , Fator de Transcrição STAT1 , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Artrite Reumatoide/metabolismo , Camundongos , Animais , Fator de Transcrição STAT1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Transdução de Sinais , Proteínas de Ligação a Hormônio da Tireoide , Fatores de Transcrição NFATC/metabolismo , Ativação Linfocitária , Hormônios Tireóideos/metabolismo , Regulação da Expressão Gênica , Células Th17/metabolismo , Células Th17/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Modelos Animais de Doenças , Piruvato Quinase
2.
Subcell Biochem ; 99: 199-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151377

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.


Assuntos
Aminoacil-tRNA Sintetases , Aminoácidos , Aminoacil-tRNA Sintetases/química , Humanos , RNA de Transferência/metabolismo
3.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175554

RESUMO

Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.


Assuntos
Trifosfato de Adenosina , Chaperonina 60 , Chaperonina 60/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 10/química , Dobramento de Proteína
4.
Am J Hum Genet ; 103(1): 100-114, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29979980

RESUMO

The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.


Assuntos
Aminoacil-tRNA Sintetases/genética , Pneumopatias/genética , Mutação/genética , Adolescente , Alelos , Doença de Charcot-Marie-Tooth/genética , Pré-Escolar , Feminino , Genes Recessivos/genética , Heterozigoto , Humanos , Lactente , Masculino , Biossíntese de Proteínas/genética
5.
Int J Mol Sci ; 17(12)2016 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-27898034

RESUMO

Since its discovery nearly 40 years ago, p53 has ascended to the forefront of investigated genes and proteins across diverse research disciplines and is recognized most exclusively for its role in cancer as a tumor suppressor. Levine and Oren (2009) reviewed the evolution of p53 detailing the significant discoveries of each decade since its first report in 1979. In this review, we will highlight the emerging non-canonical functions and regulation of p53 in stem cells. We will focus on general themes shared among p53's functions in non-malignant stem cells and cancer stem-like cells (CSCs) and the influence of p53 on the microenvironment and CSC niche. We will also examine p53 gain of function (GOF) roles in stemness. Mutant p53 (mutp53) GOFs that lead to survival, drug resistance and colonization are reviewed in the context of the acquisition of advantageous transformation processes, such as differentiation and dedifferentiation, epithelial-to-mesenchymal transition (EMT) and stem cell senescence and quiescence. Finally, we will conclude with therapeutic strategies that restore wild-type p53 (wtp53) function in cancer and CSCs, including RING finger E3 ligases and CSC maintenance. The mechanisms by which wtp53 and mutp53 influence stemness in non-malignant stem cells and CSCs or tumor-initiating cells (TICs) are poorly understood thus far. Further elucidation of p53's effects on stemness could lead to novel therapeutic strategies in cancer research.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Eur J Med Chem ; 267: 116154, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295690

RESUMO

Aberrant expression of EZH2, the main catalytic subunit of PRC2, has been implicated in numerous cancers, including leukemia, breast, and prostate. Recent studies have highlighted non-catalytic oncogenic functions of EZH2, which EZH2 catalytic inhibitors cannot attenuate. Therefore, proteolysis-targeting chimera (PROTAC) degraders have been explored as an alternative therapeutic approach to suppress both canonical and non-canonical oncogenic activity. Here we present MS8847, a novel, highly potent EZH2 PROTAC degrader that recruits the E3 ligase von Hippel-Lindau (VHL). MS8847 degrades EZH2 in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Notably, MS8847 induces superior EZH2 degradation and anti-proliferative effects in MLL-rearranged (MLL-r) acute myeloid leukemia (AML) cells compared to previously published EZH2 PROTAC degraders. Moreover, MS8847 degrades EZH2 and inhibits cell growth in triple-negative breast cancer (TNBC) cell lines, displays efficacy in a 3D TNBC in vitro model, and has a pharmacokinetic (PK) profile suitable for in vivo efficacy studies. Overall, MS8847 is a valuable chemical tool for the biomedical community to investigate canonical and non-canonical oncogenic functions of EZH2.


Assuntos
Leucemia Mieloide Aguda , Neoplasias de Mama Triplo Negativas , Masculino , Humanos , Proteólise , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
7.
Biol Open ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828842

RESUMO

Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Linhagem da Célula , Diferenciação Celular/genética , Drosophila , Transdução de Sinais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Imunidade
8.
Genes (Basel) ; 11(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906706

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Aspartato-tRNA Ligase/metabolismo , Genoma de Planta , Histidina-tRNA Ligase/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Aspartato-tRNA Ligase/genética , Domínio Catalítico , Histidina-tRNA Ligase/genética , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/genética
9.
Enzymes ; 48: 207-242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33837705

RESUMO

Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.


Assuntos
Triptofano-tRNA Ligase , Tirosina-tRNA Ligase , Domínio Catalítico , Citocinas , Citoplasma , Humanos , Triptofano-tRNA Ligase/genética , Tirosina-tRNA Ligase/genética
10.
Oncotarget ; 9(22): 16234-16247, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29662640

RESUMO

In normal tissue, p53 protein has a wide range of functions involving cell homeostasis; its mutation, however, permits a carcinogenic acquisition of function. TP53 gene mutation is a major genomic aberration in various human cancers and is a critical event in the multi-step carcinogenesis process. TP53 mutation is clinically relevant for the molecular classification of carcinogenesis, as most recently described rigorously by the Cancer Genome Atlas Research Network. TP53 gene mutation has been considered to work as a tumor suppressor gene through the loss of its transcriptional activity, which is designated as a canonical function. However, in cancer patients with mutant TP53, mutated p53 protein is frequently overexpressed, suggesting the activation of an oncogenic process through a gain of function (GOF). As part of this GOF, molecular mechanisms explaining the non-canonical function of TP53 gene abnormality have been reported, in which mutant p53 unconventionally binds with various critical molecules suppressing oncogenic properties, such as p63 and p73. Moreover, mutant TP53 gene-targeted therapy has been rigorously developed, and promising clinical trials have been started. In this study, we summarize the novel aspects of mutant p53 and describe its prominent therapeutic potentials in human cancer.

11.
Front Physiol ; 9: 332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867516

RESUMO

The main function of red blood cells (RBCs) is the transport of respiratory gases along the vascular tree. To fulfill their task, RBCs are able to elastically deform in response to mechanical forces and, pass through the narrow vessels of the microcirculation. Decreased RBC deformability was observed in pathological conditions linked to increased oxidative stress or decreased nitric oxide (NO) bioavailability, like hypertension. Treatments with oxidants and with NO were shown to affect RBC deformability ex vivo, but the mechanisms underpinning these effects are unknown. In this study we investigate whether changes in intracellular redox status/oxidative stress or nitrosation reactions induced by reactive oxygen species (ROS) or NO may affect RBC deformability. In a case-control study comparing RBCs from healthy and hypertensive participants, we found that RBC deformability was decreased, and levels of ROS were increased in RBCs from hypertensive patients as compared to RBCs from aged-matched healthy controls, while NO levels in RBCs were not significantly different. To study the effects of oxidants on RBC redox state and deformability, RBCs from healthy volunteers were treated with increasing concentrations of tert-butylhydroperoxide (t-BuOOH). We found that high concentrations of t-BuOOH (≥ 1 mM) significantly decreased the GSH/GSSG ratio in RBCs, decreased RBC deformability and increased blood bulk viscosity. Moreover, RBCs from Nrf2 knockout (KO) mice, a strain genetically deficient in a number of antioxidant/reducing enzymes, were more susceptible to t-BuOOH-induced impairment in RBC deformability as compared to wild type (WT) mice. To study the role of NO in RBC deformability we treated RBC suspensions from human volunteers with NO donors and nitrosothiols and analyzed deformability of RBCs from mice lacking the endothelial NO synthase (eNOS). We found that NO donors induced S-nitrosation of the cytoskeletal protein spectrin, but did not affect human RBC deformability or blood bulk viscosity; moreover, under unstressed conditions RBCs from eNOS KO mice showed fully preserved RBC deformability as compared to WT mice. Pre-treatment of human RBCs with nitrosothiols rescued t-BuOOH-mediated loss of RBC deformability. Taken together, these findings suggest that NO does not affect RBC deformability per se, but preserves RBC deformability in conditions of oxidative stress.

12.
Structure ; 24(3): 353-63, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833386

RESUMO

The canonical function of kinases is to transfer a phosphoryl group to substrates, initiating a signaling cascade; while their non-canonical role is to bind other kinases or substrates, acting as scaffolds, competitors, and signal integrators. Here, we show how to uncouple kinases' dual function by tuning the binding cooperativity between nucleotide (or inhibitors) and substrate allosterically. We demonstrate this new concept for the C subunit of protein kinase A (PKA-C). Using thermocalorimetry and nuclear magnetic resonance, we found a linear correlation between the degree of cooperativity and the population of the closed state of PKA-C. The non-hydrolyzable ATP analog (ATPγC) does not follow this correlation, suggesting that changing the chemical groups around the phosphoester bond can uncouple kinases' dual function. Remarkably, this uncoupling was also found for two ATP-competitive inhibitors, H89 and balanol. Since the mechanism for allosteric cooperativity is not conserved in different kinases, these results may suggest new approaches for designing selective kinase inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Nucleotídeos/metabolismo , Animais , Azepinas/farmacologia , Calorimetria , Domínio Catalítico , Humanos , Hidroxibenzoatos/farmacologia , Isoquinolinas/farmacologia , Imageamento por Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA