Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Toxicol Environ Health B Crit Rev ; 27(7): 264-286, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39056307

RESUMO

Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following in vivo dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfCcar-occup and RfCcar-genpop) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose-response data. An overall lowest BMDL10 of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfCcar-occup/genpop values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfCcar-occup/genpop values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfCcar-occup is lung cancer protective.


Assuntos
Neoplasias Pulmonares , Exposição Ocupacional , Estireno , Animais , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Estireno/toxicidade , Camundongos , Medição de Risco , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga
2.
Arch Toxicol ; 98(8): 2463-2485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811392

RESUMO

A modular strategy is described for the testing and assessment (MoSt) of non-genotoxic carcinogenicity (NGTxC) that is suitable for regulatory applications. It utilizes and builds upon work conducted by the OECD expert group on NGTxC. The approach integrates relevant test methods from the molecular- to cellular- and further to tissue level, many of which have been recently reviewed. Six progressive modules are included in the strategy. Advice is provided for the iterative selection of the next appropriate test method within each step of the strategy. Assessment is completed by a weight of evidence conclusion, which integrates the different streams of modular information. The assessment method gives higher weight to findings that are mechanistically linked with biological relevance to carcinogenesis. With a focus on EU-REACH, and pending upon successful test method validation and acceptance, this will also enable the MoSt for NGTxC to be applied for regulatory purposes across different regulatory jurisdictions.


Assuntos
Testes de Carcinogenicidade , Carcinógenos , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Animais , Humanos , Medição de Risco/métodos
3.
Toxicol Appl Pharmacol ; 461: 116407, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736439

RESUMO

The progress in image-based high-content screening technology has facilitated high-throughput phenotypic profiling notably the quantification of cell morphology perturbation by chemicals. However, understanding the mechanism of action of a chemical and linking it to cell morphology and phenotypes remains a challenge in drug discovery. In this study, we intended to integrate molecules that induced transcriptomic perturbations and cellular morphological changes into a biological network in order to assess chemical-phenotypic relationships in humans. Such a network was enriched with existing disease information to suggest molecular and cellular profiles leading to phenotypes. Two datasets were used for this study. Firstly, we used the "Cell Painting morphological profiling assay" dataset, composed of 30,000 compounds tested on human osteosarcoma cells (named U2OS). Secondly, we used the "L1000 mRNA profiling assay" dataset, a collection of transcriptional expression data from cultured human cells treated with approximately 20,000 bioactive small molecules from the Library of Integrated Network-based Cellular Signatures (LINCS). Furthermore, pathways, gene ontology terms and disease enrichments were performed on the transcriptomics data. Overall, our study makes it possible to develop a biological network combining chemical-gene-pathway-morphological perturbation and disease relationships. It contains an ensemble of 9989 chemicals, 732 significant morphological features and 12,328 genes. Through diverse examples, we demonstrated that some drugs shared similar genes, pathways and morphological profiles that, taken together, could help in deciphering chemical-phenotype observations.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Fenótipo
4.
Arch Toxicol ; 97(6): 1739-1751, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941454

RESUMO

Validated in vitro assays for testing non-genotoxic carcinogenic potential of chemicals are currently not available. Consequently, the two-year rodent bioassay remains the gold standard method for the identification of these chemicals. Transcriptomic and proteomic analyses have provided a comprehensive understanding of the non-genotoxic carcinogenic processes, however, functional changes induced by effects at transcriptional and translational levels have not been addressed. The present study was set up to test a number of proposed in vitro biomarkers of non-genotoxic hepatocarcinogenicity at the functional level using a translational 3-dimensional model. Spheroid cultures of human hepatocytes and stellate cells were exposed to 5 genotoxic carcinogenic, 5 non-genotoxic carcinogenic, and 5 non-carcinogenic chemical compounds and assessed for oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, apoptosis, and inflammation. The spheroid model could capture many of these events triggered by the genotoxic carcinogenic chemicals, particularly aflatoxin B1 and hydroquinone. Nonetheless, no clear distinction could be made between genotoxic and non-genotoxic hepatocarcinogenicity. Therefore, spheroid cultures of human liver cells may be appropriate in vitro tools for mechanistic investigation of chemical-induced hepatocarcinogenicity, however, these mechanisms and their read-outs do not seem to be eligible biomarkers for detecting non-genotoxic carcinogenic chemicals.


Assuntos
Carcinógenos , Proteômica , Humanos , Técnicas de Cocultura , Carcinógenos/toxicidade , Fígado , Hepatócitos , Testes de Carcinogenicidade/métodos
5.
Altern Lab Anim ; 51(3): 188-203, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37125451

RESUMO

The induction of vasculature formation is proposed to be a significant mechanism behind the non-genotoxic carcinogenicity of a chemical. The vasculature formation model used in this study is based on the coculture of human primary HUVECs and hASCs. This model was used to develop an assay to assess the induction of vasculature formation. Three assay protocols, based on different conditions, were developed and compared in order to identify the optimal conditions required. Some serum supplements and growth factors were observed to be essential for initiating vasculature formation. Of the studied putative positive reference chemicals, aspartame, sodium nitrite, bisphenol A and nicotine treatment led to a clear induction of vasculature formation, but arsenic and cadmium treatment only led to a slight increase. This human cell-based assay has the potential to be used as one test within a next generation testing battery, to assess the non-genotoxic carcinogenicity of a chemical through the mechanism of vasculature formation induction.


Assuntos
Carcinógenos , Humanos , Projetos Piloto , Testes de Carcinogenicidade/métodos
6.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686053

RESUMO

In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Agroquímicos , Bioensaio , Proliferação de Células
7.
Crit Rev Toxicol ; 52(1): 1-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275035

RESUMO

The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.


Assuntos
Adenoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Adenoma/metabolismo , Animais , Feminino , Humanos , Fígado , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Permetrina/toxicidade , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328637

RESUMO

The Bhas 42 cell transformation assay (Bhas 42 CTA) is the first Organization for Economic Cooperation and Development (OECD)-certificated method used as a specific tool for the detection of the cell-transformation potential of tumor-promoting compounds, including non-genotoxic carcinogens (NGTxCs), as separate from genotoxic carcinogens. This assay offers the great advantage of enabling the phenotypic detection of oncotransformation. A key benefit of using the Bhas 42 CTA in the study of the cell-transformation mechanisms of tumor-promoting compounds, including non-genotoxic carcinogens, is that the cell-transformation potential of the chemical can be detected directly without treatment with a tumor-initiating compound since Bhas 42 cell line was established by transfecting the v-Ha-ras gene into a mouse fibroblast cloned cell line. Here, we analyzed the gene expression over time, using DNA microarrays, in Bhas 42 cells treated with the tumor-promoting compound 12-O-tetradecanoylphorbol-13-acetate (TPA), and NGTxC, with a total of three repeat experiments. This is the first paper to report on gene expression over time during the process of cell transformation with only a tumor-promoting compound. Pathways that were activated or inactivated during the process of cell transformation in the Bhas 42 cells treated with TPA were related not only directly to RAS but also to various pathways in the hallmarks of cancer.


Assuntos
Hidroxianisol Butilado , Carcinógenos , Animais , Células 3T3 BALB , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Transformação Celular Neoplásica/genética , Expressão Gênica , Camundongos , Acetato de Tetradecanoilforbol/farmacologia
9.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361516

RESUMO

With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.


Assuntos
Carcinógenos , Transcriptoma , Humanos , Carcinógenos/toxicidade , Bioensaio , Carcinogênese , Testes de Carcinogenicidade/métodos
10.
Toxicol Appl Pharmacol ; 415: 115439, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549593

RESUMO

Non-genotoxic carcinogens (NGCs) are known to cause perturbations in DNA methylation, which can be an early event leading to changes in gene expression and the onset of carcinogenicity. Phenobarbital (PB) has been shown to alter liver DNA methylation and hydroxymethylation patterns in mice in a time dependent manner. The goals of this study were to assess if clofibrate (CFB), a well-studied rodent NGC, would produce epigenetic changes in mice similar to PB, and if a methyl donor supplementation (MDS) would modulate epigenetic and gene expression changes induced by phenobarbital. CByB6F1 mice were treated with 0.5% clofibrate or 0.14% phenobarbital for 7 and 28 days. A subgroup of PB treated and control mice were also fed MDS diet. Liquid Chromatography-Ionization Mass Spectrometry (LC-MS) was used to quantify global liver 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels. Gene expression analysis was conducted using Affymetrix microarrays. A decrease in liver 5hmC but not 5mC levels was observed upon treatment with both CFB and PB with varying time of onset. We observed moderate increases in 5hmC levels in PB-treated mice when exposed to MDS diet and lower expression levels of several phenobarbital induced genes involved in cell proliferation, growth, and invasion, suggesting an early modulating effect of methyl donor supplementation. Overall, epigenetic profiling can aid in identifying early mechanism-based biomarkers of non-genotoxic carcinogenicity and increases the quality of cancer risk assessment for candidate drugs. Global DNA methylation assessment by LC-MS is an informative first step toward understanding the risk of carcinogenicity.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Clofibrato/toxicidade , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metionina/administração & dosagem , Fenobarbital/toxicidade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos Transgênicos , Fatores de Tempo , Transcriptoma
11.
Crit Rev Toxicol ; 51(8): 653-694, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239444

RESUMO

The Toxicology Forum convened an international state-of-the-science workshop Assessing Chemical Carcinogenicity: Hazard Identification, Classification, and Risk Assessment in December 2020. Challenges related to assessing chemical carcinogenicity were organized under the topics of (1) problem formulation; (2) modes-of-action; (3) dose-response assessment; and (4) the use of new approach methodologies (NAMs). Key topics included the mechanisms of genotoxic and non-genotoxic carcinogenicity and how these in conjunction with consideration of exposure conditions might inform dose-response assessments and an overall risk assessment; approaches to evaluate the human relevance of modes-of-action observed in rodent studies; and the characterization of uncertainties. While the scientific limitations of the traditional rodent chronic bioassay were widely acknowledged, knowledge gaps that need to be overcome to facilitate the further development and uptake of NAMs were also identified. Since one single NAM is unlikely to replace the bioassay, activities to combine NAMs into integrated approaches for testing and assessment, or preferably into defined approaches for testing and assessment that include data interpretation procedures, were identified as urgent research needs. In addition, adverse outcome pathway networks can provide a framework for organizing the available evidence/data for assessing chemical carcinogenicity. Since a formally accepted decision tree to guide use of the best and most current science to advance carcinogenicity risk assessment is currently unavailable, a Decision Matrix for carcinogenicity assessment could be useful. The workshop organizers developed and presented a decision matrix to be considered within a carcinogenicity hazard and risk assessment that is offered in tabular form.


Assuntos
Carcinogênese , Carcinógenos , Bioensaio , Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Humanos , Medição de Risco/métodos
12.
Arch Toxicol ; 95(12): 3717-3744, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34595563

RESUMO

N-vinyl pyrrolidone (NVP) is produced up to several thousand tons per year as starting material for the production of polymers to be used in pharmaceutics, cosmetics and food technology. Upon inhalation NVP was carcinogenic in the rat, liver tumor formation is starting already at the rather low concentration of 5 ppm. Hence, differentiation whether NVP is a genotoxic carcinogen (presumed to generally have no dose threshold for the carcinogenic activity) or a non-genotoxic carcinogen (with a potentially definable threshold) is highly important. In the present study, therefore, the existing genotoxicity investigations on NVP (all showing consistently negative results) were extended and complemented with investigations on possible alternative mechanisms, which also all proved negative. All tests were performed in the same species (rat) using the same route of exposure (inhalation) and the same doses of NVP (5, 10 and 20 ppm) as had been used in the positive carcinogenicity test. Specifically, the tests included an ex vivo Comet assay (so far not available) and an ex vivo micronucleus test (in contrast to the already available micronucleus test in mice here in the same species and by the same route of application as in the bioassay which had shown the carcinogenicity), tests on oxidative stress (non-protein-bound sulfhydryls and glutathione recycling test), mechanisms mediated by hepatic receptors, the activation of which had been shown earlier to lead to carcinogenicity in some instances (Ah receptor, CAR, PXR, PPARα). No indications were obtained for any of the investigated mechanisms to be responsible for or to contribute to the observed carcinogenicity of NVP. The most important of these exclusions is genotoxicity. Thus, NVP can rightfully be regarded and treated as a non-genotoxic carcinogen and threshold approaches to the assessment of this chemical are supported. However, the mechanism underlying the carcinogenicity of NVP in rats remains unclear.


Assuntos
Carcinógenos/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Pirrolidinonas/toxicidade , Animais , Testes de Carcinogenicidade , Ensaio Cometa , Relação Dose-Resposta a Droga , Feminino , Neoplasias Hepáticas/patologia , Masculino , Testes para Micronúcleos , Testes de Mutagenicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769157

RESUMO

Connexin-based channels play key roles in cellular communication and can be affected by deleterious chemicals. In this study, the effects of various genotoxic carcinogenic compounds, non-genotoxic carcinogenic compounds and non-carcinogenic compounds on the expression and functionality of connexin-based channels, both gap junctions and connexin hemichannels, were investigated in human hepatoma HepaRG cell cultures. Expression of connexin26, connexin32, and connexin43 was evaluated by means of real-time reverse transcription quantitative polymerase chain reaction analysis, immunoblot analysis and in situ immunostaining. Gap junction functionality was assessed via a scrape loading/dye transfer assay. Opening of connexin hemichannels was monitored by measuring extracellular release of adenosine triphosphate. It was found that both genotoxic and non-genotoxic carcinogenic compounds negatively affect connexin32 expression. However, no specific effects related to chemical type were observed at gap junction or connexin hemichannel functionality level.


Assuntos
Carcinógenos/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Conexinas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Conexina 26/genética , Conexina 26/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína beta-1 de Junções Comunicantes
14.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681626

RESUMO

Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.


Assuntos
Metilação de DNA , Epigenômica , Histonas/metabolismo , Animais , Arsenicais/farmacologia , Metilação de DNA/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Humanos , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos
15.
Crit Rev Toxicol ; 50(1): 72-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133908

RESUMO

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Carcinógenos/classificação , Ecotoxicologia , Humanos , Medição de Risco/métodos
16.
J Toxicol Environ Health B Crit Rev ; 23(6): 255-275, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568623

RESUMO

Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.


Assuntos
Comunicação Celular/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Conexinas/biossíntese , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Fígado/metabolismo , Metais/toxicidade , Peróxidos/toxicidade , Praguicidas/toxicidade , Ácidos Ftálicos/toxicidade , Medição de Risco , Solventes/toxicidade , Toxinas Biológicas/toxicidade
17.
Arch Toxicol ; 94(8): 2873-2884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32435917

RESUMO

Dieldrin has been shown to induce liver tumors selectively in mice. Although the exact mechanism is not fully understood, previous studies from our laboratory and others have shown that dieldrin induced liver tumors in mice through a non-genotoxic mechanism acting on tumor promotion stage. Two studies were performed to examine the role of nuclear receptor activation as a possible mode of action (MOA) for dieldrin-induced mouse liver tumors. In the initial study, male C57BL/6 mice (6- to 8-week old) were treated with dieldrin in diet (10 ppm) for 7, 14, and 28 days. Phenobarbital (PB), beta-naphthoflavone (BNF) and Di (2-ethylhexyl) phthalate (DEHP) were included as positive controls in this study for evaluating the involvement of CAR (constitutive androstane receptor), AhR (aryl hydrocarbon receptor) or PPARα (peroxisome proliferator activated receptor alpha) in the MOA of dieldrin hepatocarcinogenesis. A significant increase in hepatocyte DNA synthesis (BrdU incorporation) was seen in treated mice compared with the untreated controls. Analysis of the expression of the nuclear receptor responsive genes revealed that dieldrin induced a significant increase in the expression of genes specific to CAR activation (Cyp2b10, up to 400- to 2700-fold) and PXR activation (Cyp3a11, up to 5- to 11-fold) over untreated controls. The AhR target genes Cyp1a1 and Cyp1a2 were also slightly induced (2.0- to 3.7-fold and 1.7- to 2.8-fold, respectively). PPARα activation was not seen in the liver following dieldrin treatment. In addition, consistent with previous studies in our lab, treatment with dieldrin produced significant elevation in the hepatic oxidative stress. In a subsequent study using CAR, PXR, and CAR/PXR knockout mice, we confirmed that the dieldrin-induced liver effects in mouse were only mediated by the activation of CAR receptor. Based on these findings, we propose that dieldrin induced liver tumors in mice through a nuclear receptor CAR-mediated mode of action. The previously observed oxidative stress/damage may be an associated or modifying factor in the process of dieldrin-induced liver tumor formation subsequent to the CAR activation.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Dieldrin/toxicidade , Inseticidas/toxicidade , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/biossíntese , Família 2 do Citocromo P450/genética , Replicação do DNA/efeitos dos fármacos , Indução Enzimática , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/genética , PPAR alfa/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Esteroide Hidroxilases/biossíntese , Esteroide Hidroxilases/genética
18.
Arch Toxicol ; 94(8): 2899-2923, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594184

RESUMO

While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Animais , Consenso , Humanos , Reprodutibilidade dos Testes , Medição de Risco
19.
Arch Toxicol ; 94(9): 2939-2950, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32494932

RESUMO

The weight of evidence pro/contra classifying the process-related food contaminant (PRC) acrylamide (AA) as a genotoxic carcinogen is reviewed. Current dietary AA exposure estimates reflect margins of exposure (MOEs) < 500. Several arguments support the view that AA may not act as a genotoxic carcinogen, especially not at consumer-relevant exposure levels: Biotransformation of AA into genotoxic glycidamide (GA) in primary rat hepatocytes is markedly slower than detoxifying coupling to glutathione (GS). Repeated feeding of rats with AA containing foods, bringing about uptake of 100 µg/kg/day of AA, resulted in dose x time-related buildup of AA-hemoglobin (Hb) adducts, whereas GA-Hb adducts remained within the background. Since hepatic oxidative biotransformation of AA into GA was proven by simultaneous urinary mercapturic acid monitoring it can be concluded that at this nutritional intake level any GA formed in the liver from AA is quantitatively coupled to GS to be excreted as mercapturic acid in urine. In an oral single dose-response study in rats, AA induced DNA N7-GA-Gua adducts dose-dependently in the high dose range (> 100 µg/kg b w). At variance, in the dose range below 100 µg/kg b.w. down to levels of average consumers exposure, DNA N7 -Gua lesions were found only sporadically, without dose dependence, and at levels close to the lower bound of similar human background DNA N7-Gua lesions. No DNA damage was detected by the comet assay within this low dose range. GA is a very weak mutagen, known to predominantly induce DNA N7-GA-Gua adducts, especially in the lower dose range. There is consensus that DNA N7-GA-Gua adducts exhibit rather low mutagenic potency. The low mutagenic potential of GA has further been evidenced by comparison to preactivated forms of other process-related contaminants, such as N-Nitroso compounds or polycyclic aromatic hydrocarbons, potent food borne mutagens/carcinogens. Toxicogenomic studies provide no evidence supporting a genotoxic mode of action (MOA), rather indicate effects on calcium signalling and cytoskeletal functions in rodent target organs. Rodent carcinogenicity studies show induction of strain- and species-specific neoplasms, with MOAs not considered likely predictive for human cancer risk. In summary, the overall evidence clearly argues for a nongenotoxic/nonmutagenic MOA underlying the neoplastic effects of AA in rodents. In consequence, a tolerable intake level (TDI) may be defined, guided by mechanistic elucidation of key adverse effects and supported by biomarker-based dosimetry in experimental systems and humans.


Assuntos
Acrilamida/toxicidade , Carcinógenos/toxicidade , Ensaio Cometa , Exposição Dietética , Animais , Hepatócitos , Humanos , Masculino , Ratos
20.
Regul Toxicol Pharmacol ; 118: 104789, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035627

RESUMO

Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.


Assuntos
Agroquímicos/efeitos adversos , Alternativas aos Testes com Animais , Testes de Carcinogenicidade , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias/induzido quimicamente , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Congressos como Assunto , Humanos , Testes de Mutagenicidade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medição de Risco , Testes de Toxicidade Subcrônica , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA