Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Toxicol Pathol ; : 1926233241255125, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829005

RESUMO

Digitalization of pathology workflows has undergone a rapid evolution and has been widely established in the diagnostic field but remains a challenge in the nonclinical safety context due to lack of regulatory guidance and validation experience for good laboratory practice (GLP) use. One means to demonstrate that digital slides are fit for purpose, that is, provide sufficient quality for pathologists to reach a diagnosis, is conduction of comparison studies, which have been published both, for veterinary and human diagnostic pathology, but not for toxicologic pathology. Here, we present an approach that uses study material from nonclinical safety studies and that allows for the statistical comparison of concordance rates for glass and digital slide evaluation while minimizing time and effort for the involved personnel. Using a benchmark study design, we demonstrate that evaluation of digital slides fits the purpose of nonclinical safety evaluation. These results add to reports of successful workflow validations and support the full adaptation of digital pathology in the regulatory field.

2.
Toxicol Pathol ; : 1926233241268849, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149788

RESUMO

Degenerative lesions specific to the basal nuclei have not been described as a background finding in Beagle dogs. This report comprises a documentation of seven cases. In the context of a nonclinical safety studies, the authors suggest documenting the lesion descriptively as degeneration neuropil, basal nuclei, bilateral as it is characterized by (1) vacuolation, neuropil; (2) gliosis (astro- and/or microgliosis); and (3) demyelination. This novel lesion is considered a potential new background change for several reasons: (1) It occurred in animals from test item-treated and also vehicle-treated groups; (2) no dose dependency was observed; (3) in one of six affected test item-treated dogs, the given compound was shown not to penetrate the blood-brain barrier; and (4) statistical comparison between the proportions of affected dogs in the treatment and control groups did not yield a statistically significant difference. The etiology remains unknown and is subject to further investigations.

3.
J Appl Toxicol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977376

RESUMO

The (diphtheria, tetanus, and pertussis [acellular, component] [DTacP]) vaccine is a combined vaccine designed to prevent three potentially fatal diseases including pertussis, tetanus, and diphtheria in both children and adults. We utilized advanced technology to develop a novel DTacP vaccine that was previously unavailable in China. The nonclinical studies were performed to evaluate the immunogenicity, potential toxicity, and local tolerance of the vaccine in animal models. In the immunogenicity study, three batches of the vaccine were intraperitoneally administered to National Institutes of Health (NIH) mice, resulting in 100% seropositivity for all three batches. Additionally, antibody levels notably increased as the immunization dosage increased. In acute toxicity study, no mortality was observed among the animals during the 14-day observation period, and no abnormalities in clinical signs were reported. Active systemic anaphylaxis assessment in guinea pigs showed no evidence of serious allergic reactions in the vaccine groups. In the repeat-dose toxicity study, where five intramuscular doses were administered every 2 weeks, gross autopsy and histopathological examination revealed no vaccine-related systemic pathological changes in rats, with dose site irritant reactions mostly recovered at the end of recovery period. In conclusion, the vaccine demonstrated good local and systemic tolerance, supporting its clinical development.

4.
J Appl Toxicol ; 44(5): 770-783, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237604

RESUMO

Contezolid acefosamil (CZA) is an intravenous prodrug of oxazolidinone antibiotic contezolid (CZD). It is being developed to treat infections due to Gram-positive bacteria including multidrug-resistant pathogens, while addressing myelosuppression and neurotoxicity limitations associated with long-term use of this class of antibiotics. In vivo, CZA is rapidly deacylated into its first metabolite MRX-1352, which is then dephosphorylated to release active drug CZD. Four-week repeat-dose toxicity studies of intravenous CZA were conducted in Sprague-Dawley rats (40, 80, and 160/120 mg/kg/dose twice a day [BID]) and beagle dogs (25, 50, and 100/75 mg/kg/dose BID). The high doses administered to both rats and dogs were adjusted due to adverse effects including decreased body weight and food consumption. Additionally, a dose-dependent transient reduction in erythrocyte levels was recorded at the end of dosing phase. Importantly, no myelosuppressive reduction in platelet counts was observed, in contrast to the myelosuppression documented for standard-of-care oxazolidinone linezolid. The no-observed-adverse-effect level (NOAEL) of CZA was 80 and 25 mg/kg/dose BID in rats and dogs, respectively. Separately, 3-month neuropathological evaluation in Long-Evans rats (25, 37.5, and 50 mg/kg/dose, oral CZA, BID) demonstrated no neurotoxicity in the central, peripheral, and optical neurological systems. Toxicokinetic data from these studies revealed that CZD exposures at NOAELs were higher than or comparable with that for the intended clinical dose. These results confirm the favorable safety profile for CZA and support its clinical evaluation for long-term therapy of persistent Gram-positive infections, beyond the application for earlier oxazolidinones.


Assuntos
Antibacterianos , Oxazolidinonas , Piridonas , Ratos , Cães , Animais , Ratos Sprague-Dawley , Ratos Long-Evans , Antibacterianos/toxicidade , Oxazolidinonas/toxicidade
5.
J Appl Toxicol ; 44(9): 1426-1445, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38782376

RESUMO

Legubicin is a novel conjugate of doxorubicin and a legumain-cleavable peptide linker. It has been developed to ameliorate the side effects of doxorubicin. Biodistribution in tumor-bearing mice, acute tolerance, and potential systemic toxic effects in Sprague-Dawley rats and beagle dogs of legubicin were assessed. Legubicin exists mainly as a protein complex in plasma after entering the circulation. Compared with conventional doxorubicin at an equal molar dose in mice, we found higher exposure to doxorubicin in tumor (approximately 1.7-fold increase) while lower exposure in normal tissues (an ~3.26-, 3.46-, and 1.29-fold reduction in heart, kidney, and plasma, respectively) in tumor-bearing mice after intravenous injection of legubicin. The acute maximum tolerance dose (MTD) of legubicin was >16 mg/kg doxorubicin equivalent in female rats, 11 mg/kg doxorubicin equivalent in male rats (LD50 of conventional doxorubicin is 10.51 mg/kg), and >8 mg/kg doxorubicin equivalent in dogs (MTD of conventional doxorubicin is 1.5 mg/kg). Four-week repeat-dose toxicity studies of intravenous legubicin were conducted in rats (5, 10, and 25 mg/kg/dose once weekly) and dogs (3/1.5, 10/5, and 20/10 mg/kg/dose once weekly); the dose levels were reduced from the second dose due to intolerable legubicin-associated toxicity at 20 mg/kg. Major organs of toxicity included the gastrointestinal tract, lymphoid and hematopoietic organs, kidney, skin, liver, reproductive organs, and peripheral nerves, which are all associated with doxorubicin. However, cardiotoxicity was only noted at MTD dose levels. Altogether, our results confirm an improved safety profile of legubicin over conventional doxorubicin and support its clinical benefit for treating cancer.


Assuntos
Doxorrubicina , Ratos Sprague-Dawley , Animais , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidade , Distribuição Tecidual , Feminino , Masculino , Cães , Ratos , Camundongos , Cisteína Endopeptidases , Dose Máxima Tolerável , Dose Letal Mediana , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/toxicidade
6.
J Med Primatol ; 52(1): 64-78, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36300896

RESUMO

BACKGROUND: The cynomolgus macaque has become the most used non-human primate species in nonclinical safety assessment during the past decades. METHODS: This review summarizes the biological data and organ system development milestones of the cynomolgus macaque available in the literature. RESULTS: The cynomolgus macaque is born precocious relative to humans in some organ systems (e.g., nervous, skeletal, respiratory, and gastrointestinal). Organ systems develop, refine, and expand at different rates after birth. In general, the respiratory, gastrointestinal, renal, and hematopoietic systems mature at approximately 3 years of age. The female reproductive, cardiovascular and hepatobiliary systems mature at approximately 4 years of age. The central nervous, skeletal, immune, male reproductive, and endocrine systems complete their development at approximately 5 to 9 years of age. CONCLUSIONS: The cynomolgus macaque has no meaningful developmental differences in critical organ systems between 2 and 3 years of age for use in nonclinical safety assessment.


Assuntos
Biologia , Masculino , Feminino , Animais , Macaca fascicularis
7.
Toxicol Pathol ; 51(6): 363-374, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-38288942

RESUMO

Existing nervous system sampling and processing "best practices" for nonclinical general toxicity studies (GTS) were designed to assess test articles with unknown, no known, or well-known neurotoxic potential. Similar practices are applicable to juvenile animal studies (JAS). In GTS and JAS, the recommended baseline sampling for all species includes brain (7 sections), spinal cord (cervical and lumbar divisions [cross and longitudinal sections for each]), and 1 nerve (sciatic or tibial [cross and longitudinal sections]) in hematoxylin and eosin-stained sections. Extra sampling and processing (ie, an "expanded neurohistopathology evaluation" [ENHP]) are used for agents with anticipated neuroactivity (toxic ± therapeutic) of incompletely characterized location and degree. Expanded sampling incorporates additional brain (usually 8-15 sections total), spinal cord (thoracic ± sacral divisions), ganglia (somatic ± autonomic, often 2-8 total), and/or nerves (2-6 total) depending on the species and study objectives. Expanded processing typically adds special neurohistological procedures (usually 1-4 for selected samples) to characterize glial reactions, myelin integrity, and/or neuroaxonal damage. In my view, GTS and JAS designs should sample neural tissues at necropsy as if ENHP will be needed eventually, and when warranted ENHP may incorporate expanded sampling and/or expanded processing depending on the study objective(s).


Assuntos
Encéfalo , Síndromes Neurotóxicas , Animais , Projetos de Pesquisa , Bainha de Mielina , Medula Espinal
8.
Toxicol Pathol ; 51(1-2): 68-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057409

RESUMO

Gliosis, defined as a nonneoplastic reaction (hypertrophy and/or proliferation) of astrocytes and/or microglial cells, is a frequent finding in the central nervous system (CNS [brain and/or spinal cord]) in nonclinical safety studies. Gliosis in rodents and nonrodents occurs at low incidence as a spontaneous finding and is induced by various test articles (e.g., biomolecules, cell and gene therapies, small molecules) delivered centrally (i.e., by injection or infusion into cerebrospinal fluid or neural tissue) or systemically. Several CNS gliosis patterns occur in nonclinical species. First, gliosis may accompany degeneration and/or necrosis of cells (mainly neurons) or neural parenchyma (neuron processes and myelin). Second, gliosis often follows inflammation (i.e., leukocyte accumulation causing parenchymal damage) or neoplasm formation. Third, gliosis may appear as variably sized, randomly scattered foci of reactive glial cells in the absence of visible parenchymal damage or inflammation. In interpreting test article-related CNS gliosis, adversity is indicated by parenchymal injury (e.g., degeneration, necrosis, or inflammation) and not the mere existence of a glial reaction. In the absence of clear structural damage to the parenchyma, gliosis as a standalone CNS finding should be interpreted as a nonadverse reaction to regional alterations in microenvironmental conditions rather than as evidence of a glial reaction associated with neurotoxicity.


Assuntos
Gliose , Medula Espinal , Humanos , Gliose/tratamento farmacológico , Gliose/etiologia , Gliose/patologia , Medula Espinal/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Inflamação/patologia , Necrose/complicações , Necrose/patologia , Proteína Glial Fibrilar Ácida/metabolismo
9.
Regul Toxicol Pharmacol ; 138: 105327, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586472

RESUMO

The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use. The impact of the NHP shortage on drug development led DruSafe, BioSafe, and the United States (U.S.) Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER) to discuss this issue at their 2021 annual meeting. This meeting identified areas to further the 3Rs in NHP use within the current nonclinical safety evaluation regulatory framework and highlighted the need to continue advancing alternative methods towards the aspirational goal to replace use of NHPs in the long term. Alignment across global health authorities is necessary for implementation of approaches that fall outside existing guidelines. This article captures the proceedings from this meeting highlighting current best practices and areas for 3Rs in NHP use.


Assuntos
COVID-19 , Primatas , Animais , Humanos , Estados Unidos , United States Food and Drug Administration , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2
10.
J Appl Toxicol ; 43(4): 534-556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36227735

RESUMO

Herpes simplex virus type 2 (HSV-2) is the most common cause of genital disease worldwide. The development of an effective HSV-2 vaccine would significantly impact global health based on the psychological distress caused by genital herpes for some individuals, the risk transmitting the infection from mother to infant, and the elevated risk of acquiring HIV-1. Five nonclinical safety studies were conducted with the replication defective HSV529 vaccine, alone or adjuvanted with GLA-SE, and the G103 subunit vaccine containing GLA-SE. A biodistribution study was conducted in guinea pigs to evaluate distribution, persistence, and shedding of HSV529. A preliminary immunogenicity study was conducted in rabbits to demonstrate HSV529-specific humoral response and its enhancement by GLA-SE. Three repeated-dose toxicity studies, one in guinea pigs and two in rabbits, were conducted to assess systemic toxicity and local tolerance of HSV529, alone or adjuvanted with GLA-SE, or G103 containing GLA-SE. Data from these studies show that both vaccines are safe and well tolerated and support the ongoing HSV-2 clinical trial in which the two vaccine candidates will be given either sequentially or concomitantly to explore their potential synergistic and incremental effects.


Assuntos
Anticorpos Antivirais , Herpesvirus Humano 2 , Humanos , Animais , Cobaias , Coelhos , Distribuição Tecidual , Proteínas do Envelope Viral , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas
11.
Toxicol Pathol ; 50(4): 512-530, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762822

RESUMO

Nonclinical implantation studies are a common and often critical step for medical device safety assessment in the bench-to-market pathway. Nonclinical implanted medical devices or drug-device combination products require complex macroscopic and microscopic pathology evaluations due to the physical presence of the device itself and unique tissue responses to device materials. The Medical Device Implant Site Evaluation working group of the Society of Toxicologic Pathology's (STP) Scientific and Regulatory Policy Committee (SRPC) was tasked with reviewing scientific, technical, and regulatory considerations for these studies. Implant site evaluations require highly specialized methods and analytical schemes that should be designed on a case-by-case basis to address specific study objectives. Existing STP best practice recommendations can serve as a framework when performing nonclinical studies under Good Laboratory Practices and help mitigate limitations in standards and guidances for implant evaluations (e.g., those from the International Organization for Standardization [ISO], ASTM International). This article integrates standards referenced by sponsors and regulatory bodies with practical pathology evaluation methods for implantable medical devices and combination products. The goal is to ensure the maximum accuracy and scientific relevance of pathology data acquired during a medical device or combination drug-device implantation study.


Assuntos
Políticas
12.
Int J Toxicol ; 41(2): 143-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230174

RESUMO

Determining the adverse nature of findings from nonclinical safety studies often poses a challenge for the key stakeholders responsible for interpreting the results of definitive toxicity studies in support of pharmaceutical product development. Although there are instances in which responses to treatment clearly indicate intolerability or tissue injury associated with dysfunction; in practice, more often there is uncertainty in characterizing an effect of drug treatment as adverse or not. This is due to the inherent variability in responses of biological test systems to toxicological insults, leaving the ultimate analyses of adversity to individual interpretation and subjectivity. This article is a follow-up to the workshop entitled, "Adverse or Not Adverse?: Thinking process behind adversity determination during nonclinical drug development," conducted at the 58th Annual Meeting of the Society of Toxicology, March 2019 in Baltimore, MD. In this paper, we further discuss and incorporate the perspectives of authors representing different roles, such as Study Director, Study Pathologist, Pharmacology/Toxicology Reviewer (U.S. Food and Drug Administration), and Sponsor in the determination and use of adversity. We also present a practical stepwise approach as an aid in this assessment, and further apply these principles to discuss 10 case studies with different therapeutic modalities and unique challenges.


Assuntos
Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Nível de Efeito Adverso não Observado , Preparações Farmacêuticas , Medição de Risco/métodos , Estados Unidos , United States Food and Drug Administration
13.
Toxicol Pathol ; 49(5): 977-989, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33661059

RESUMO

The sexual maturity status of animals in nonclinical safety studies can have a significant impact on the microscopic assessment of the reproductive system, the interpretation of potential test article-related findings, and ultimately the assessment of potential risk to humans. However, the assessment and documentation of sexual maturity for animals in nonclinical safety studies is not conducted in a consistent manner across the pharmaceutical and chemical industries. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology convened an international working group of pathologists and nonclinical safety scientists with expertise in the reproductive system, pathology nomenclature, and Standard for Exchange of Nonclinical Data requirements. This article describes the best practices for documentation of the light microscopic assessment of sexual maturity in males and females for both rodent and nonrodent nonclinical safety studies. In addition, a review of the microscopic features of the immature, peripubertal, and mature male and female reproductive system and general considerations for study types and reporting are provided to aid the study pathologist tasked with documentation of sexual maturity.


Assuntos
Patologistas , Testes de Toxicidade , Animais , Documentação , Feminino , Humanos , Masculino , Políticas , Projetos de Pesquisa
14.
Toxicol Pathol ; 49(5): 996-1023, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576319

RESUMO

A host of novel renal biomarkers have been developed over the past few decades which have enhanced monitoring of renal disease and drug-induced kidney injury in both preclinical studies and in humans. Since chronic kidney disease (CKD) and acute kidney injury (AKI) share similar underlying mechanisms and the tubulointerstitial compartment has a functional role in the progression of CKD, urinary biomarkers of AKI may provide predictive information in chronic renal disease. Numerous studies have explored whether the recent AKI biomarkers could improve upon the standard clinical biomarkers, estimated glomerular filtration rate (eGFR), and urinary albumin to creatinine ratio, for predicting outcomes in CKD patients. This review is an introduction to alternative assays that can be utilized in chronic (>3 months duration) nonclinical safety studies to provide information on renal dysfunction and to demonstrate specific situations where these assays could be utilized in nonclinical drug development. Novel biomarkers such as symmetrical dimethyl arginine, dickkopf homolog 3, and cystatin C predict chronic renal injury in animals, act as surrogates for GFR, and may predict changes in GFR in patients over time, ultimately providing a bridge from preclinical to clinical renal monitoring.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Biomarcadores , Creatinina , Taxa de Filtração Glomerular , Humanos , Rim , Insuficiência Renal Crônica/induzido quimicamente
15.
Int J Toxicol ; 40(5): 427-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137282

RESUMO

Sotorasib is a first-in-class KRASG12C covalent inhibitor in clinical development for the treatment of tumors with the KRAS p.G12C mutation. A comprehensive nonclinical safety assessment package, including secondary/safety pharmacology and toxicology studies, was conducted to support the marketing application for sotorasib. Sotorasib was negative in a battery of genotoxicity assays and negative in an in vitro phototoxicity assay. Based on in vitro assays, sotorasib had no off-target effects against various receptors, enzymes (including numerous kinases), ion channels, or transporters. Consistent with the tumor-specific target distribution (ie, KRASG12C), there were no primary pharmacology-related on-target effects identified. The kidney was identified as a target organ in the rat but not the dog. Renal toxicity in the rat was characterized by tubular degeneration and necrosis restricted to a specific region suggesting that the toxicity was attributed to the local formation of a putative toxic reactive metabolite. In the 3-month dog study, adaptive changes of hepatocellular hypertrophy due to drug metabolizing enzyme induction were observed in the liver that was associated with secondary effects in the pituitary and thyroid gland. Sotorasib was not teratogenic and had no direct effect on embryo-fetal development in the rat or rabbit. Human, dog, and rat circulating metabolites, M24, M10, and M18, raised no clinically relevant safety concerns based on the general toxicology studies, primary/secondary pharmacology screening, an in vitro human ether-à-go-go-related gene assay, or mutagenicity assessment. Overall, the results of the nonclinical safety program support a high benefit/risk ratio of sotorasib for the treatment of patients with KRAS p.G12C-mutated tumors.


Assuntos
Antineoplásicos/toxicidade , Piperazinas/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia
16.
Int J Toxicol ; 40(3): 270-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33631988

RESUMO

Safety assessment of biological drugs has its challenges due to the multiple new different modalities, for example, antibody-drug conjugates, bispecifics, nanobodies, fusion proteins and advanced therapy medicinal products (ATMPs), their different pharmacokinetic and pharmacodynamic properties, and their ability to trigger immunogenicity and toxicity. In the public and in the pharmaceutical industry, there is a strong and general desire to reduce the number of animals used in research and development of drugs and in particular reducing the use of nonhuman primates. Important discussions and activities are ongoing investigating the smarter designs of early research and dose range finding studies, reuse of animals, and replacing animal experiments with in vitro studies. Other important challenges include absence of a relevant species and design of studies and developing genetically modified animals for special investigative toxicology studies. Then, the learnings and challenges from the development of the first ATMPs are available providing valuable insights in the development path for these new potentially transformative treatments. Finally, development of strategies for assessment of immunogenicity and prediction of translation of immunogenicity and associated findings to the clinic. On this, the eighth meeting for the European BioSafe members, these challenges served as the basis for the presentations and discussions during the meeting. This article serves as the workshop report reviewing the presentations and discussions at the meeting.


Assuntos
Alternativas aos Testes com Animais/métodos , Anticorpos Monoclonais/farmacocinética , Produtos Biológicos/farmacocinética , Biomarcadores Farmacológicos , Congressos como Assunto , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Humanos
17.
Regul Toxicol Pharmacol ; 117: 104750, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745584

RESUMO

Cyclocreatine (LUM-001), a creatine analog, was evaluated for its nonclinical toxicity in Sprague Dawley (SD) rats. Deionized water as a vehicle control article or cyclocreatine was administered by oral gavage twice daily (approximately 12 ± 1 h apart) at 30, 100 and 300 mg/kg/dose levels in rats up to 26 weeks followed by a 28-day recovery period. Due to an increased incidence of seizures, the 600 mg/kg/day dose group males were dosed only for 16-weeks followed by a 14-week recovery period. Thirteen males and four females from 600 mg/kg/day dose group were sacrificed at interim on Day 113 to study plausible brain lesions and not due to moribundity. There was a dose dependent increase in the number of seizure incidences in ≥60 mg/kg/day males and 600 mg/kg/day females. Microscopically, higher incidences of vacuoles in the brain at 600 mg/kg/day in both sexes, thyroid follicular atrophy and follicular cell hypertrophy at ≥200 mg/kg/day in males and 600 mg/kg/day in females, and seminiferous tubular degeneration and/or interstitial edema in testes at ≥200 mg/kg/day were observed. Mean plasma half-life of cyclocreatine was between 3.5 and 6.5 h. In conclusion, chronic administration of cyclocreatine by oral gavage in Sprague Dawley rats induced the seizures and microscopic lesions in the brain, testes and thyroid. Based on the results of this study the highest tested dose of 600 mg/kg/day (mean Cmax of 151.5 µg/mL; AUC0-24 of 1970 h*µg/mL) was considered the maximum tolerated dose (MTD) in SD rats.


Assuntos
Encéfalo/efeitos dos fármacos , Creatinina/análogos & derivados , Testes de Toxicidade Crônica/métodos , Administração Oral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Creatina/análogos & derivados , Creatina/sangue , Creatina/toxicidade , Creatinina/administração & dosagem , Creatinina/sangue , Creatinina/toxicidade , Feminino , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Ratos , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Fatores de Tempo
18.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32822771

RESUMO

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Cardiotoxinas/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Guias de Prática Clínica como Assunto/normas , Estudos de Validação como Assunto , Células-Tronco Adultas/patologia , Células-Tronco Adultas/fisiologia , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/patologia
19.
Int J Toxicol ; 39(3): 232-240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484067

RESUMO

Zanubrutinib an oral irreversible Bruton's tyrosine kinase (BTK) inhibitor, is under development for the treatment of a variety of B-cell malignancies and has received accelerated approval by the US Food and Drug Administration for treatment of adult patients with mantel cell lymphoma who have received at least one prior therapy. Zanubrutinib moderately inhibited the human ether- à -go-go-related gene channel with half maximal inhibition concentration (IC50) of 9.11 µM and showed neither effects on the cardiovascular system functions in telemetry-implanted dogs nor on the respiratory and central nervous system functions in rats. No toxicologically significant changes were noted in rats and dogs at the systemic exposure ratios (area under the curve ratio between animals and humans at the therapeutic dose) up to 26- and 15-fold for 26-weeks and 39-weeks of treatment, respectively. Zanubrutinib was not genotoxic. Fertility studies showed no abnormal findings in both male and female rats at the systemic exposure ratios of up to 12-fold; embryo-fetal studies showed no fetal lethality or teratogenicity in rabbit or rat fetuses at the systemic exposure ratios of up to 25- and 16-fold, respectively, except for 0.3% to 1.5% of 2 or 3 chambered hearts in rat fetuses; pre- and postnatal developmental toxicity showed no effects in rats at the systemic exposure ratios up to 16-fold except for an increased incidence (26% to 42%) and severity of various ophthalmic lesions in treated groups compared to the concurrent control group (26%). These nonclinical study results suggest that zanubrutinib has a broad safety window and an optimal safety profile while treating patients with advanced cancers.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/toxicidade , Piperidinas/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Pirazóis/toxicidade , Pirimidinas/toxicidade , Animais , Antineoplásicos/farmacologia , Cães , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Coelhos , Ratos , Reprodução/efeitos dos fármacos , Testes de Toxicidade
20.
Toxicol Pathol ; 46(7): 777-798, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30343647

RESUMO

The obese rodent serves as an indispensable tool for proof-of-concept efficacy and mode-of-action pharmacology studies. Yet the utility of this disease model as an adjunct to the conventional healthy animal in the nonclinical safety evaluation of anti-obesity pharmacotherapies has not been elucidated. Regulatory authorities have recommended employing disease models in toxicology studies when necessary. Our study investigated standard and exploratory toxicology parameters in the high-fat diet (HFD)-induced obese, polygenic Sprague-Dawley rat model in comparison to chow diet (CD)-fed controls. We sought to establish feasibility of the model for safety testing and relevance to human obesity pathophysiology. We report that both sexes fed a 45% kcal HFD for 29 weeks developed obesity and metabolic derangements that mimics to a certain extent, common human obesity. Minor clinical pathologies were observed in both sexes and considered related to CD versus HFD differences. Histopathologically, both sexes exhibited mild obesity-associated findings in brown and subcutaneous white fat, bone, kidneys, liver, lung, pancreas, salivary parotid glands, and skeletal muscle. We conclude that chronic HFD feeding in both sexes led to the development of an obese but otherwise healthy rat. Therefore, the diet-induced obese Sprague-Dawley rat may serve as a suitable model for evaluating toxicity findings encountered with anti-obesity compounds.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Obesidade/etiologia , Animais , Fármacos Antiobesidade/toxicidade , Biomarcadores/sangue , Biomarcadores/urina , Peso Corporal/fisiologia , Avaliação Pré-Clínica de Medicamentos , Ciclo Estral/fisiologia , Feminino , Masculino , Obesidade/sangue , Obesidade/fisiopatologia , Obesidade/urina , Tamanho do Órgão/fisiologia , Especificidade de Órgãos/fisiologia , Estudo de Prova de Conceito , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA