Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 115(6): 110731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871849

RESUMO

Ligase IV is a key enzyme involved during DNA double-strand breaks (DSBs) repair through nonhomologous end joining (NHEJ). However, in contrast to Ligase IV deficient mouse cells, which are embryonic lethal, Ligase IV deficient human cells, including pre-B cells, are viable. Using CRISPR-Cas9 mediated genome editing, we have generated six different LIG4 mutants in cervical cancer and normal kidney epithelial cell lines. While the LIG4 mutant cells showed a significant reduction in NHEJ, joining mediated through microhomology-mediated end joining (MMEJ) and homologous recombination (HR) were significantly high. The reduced NHEJ joining activity was restored by adding purified Ligase IV/XRCC4. Accumulation of DSBs and reduced cell viability were observed in LIG4 mutant cells. LIG4 mutant cells exhibited enhanced sensitivity towards DSB-inducing agents such as ionizing radiation (IR) and etoposide. More importantly, the LIG4 mutant of cervical cancer cells showed increased sensitivity towards FDA approved drugs such as Carboplatin, Cisplatin, Paclitaxel, Doxorubicin, and Bleomycin used for cervical cancer treatment. These drugs, in combination with IR showed enhanced cancer cell death in the background of LIG4 gene mutation. Thus, our study reveals that mutation in LIG4 results in compromised NHEJ, leading to sensitization of cervical cancer cells towards currently used cancer therapeutics.


Assuntos
DNA Ligase Dependente de ATP , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Reparo do DNA/genética , Ligases/genética , Ligases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
2.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917044

RESUMO

High-linear-energy-transfer (LET) radiation is more lethal than similar doses of low-LET radiation types, probably a result of the condensed energy deposition pattern of high-LET radiation. Here, we compare high-LET α-particle to low-LET X-ray irradiation and monitor double-strand break (DSB) processing. Live-cell microscopy was used to monitor DNA double-strand breaks (DSBs), marked by p53-binding protein 1 (53BP1). In addition, the accumulation of the endogenous 53BP1 and replication protein A (RPA) DSB processing proteins was analyzed by immunofluorescence. In contrast to α-particle-induced 53BP1 foci, X-ray-induced foci were resolved quickly and more dynamically as they showed an increase in 53BP1 protein accumulation and size. In addition, the number of individual 53BP1 and RPA foci was higher after X-ray irradiation, while focus intensity was higher after α-particle irradiation. Interestingly, 53BP1 foci induced by α-particles contained multiple RPA foci, suggesting multiple individual resection events, which was not observed after X-ray irradiation. We conclude that high-LET α-particles cause closely interspaced DSBs leading to high local concentrations of repair proteins. Our results point toward a change in DNA damage processing toward DNA end-resection and homologous recombination, possibly due to the depletion of soluble protein in the nucleoplasm. The combination of closely interspaced DSBs and perturbed DNA damage processing could be an explanation for the increased relative biological effectiveness (RBE) of high-LET α-particles compared to X-ray irradiation.


Assuntos
Partículas alfa , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Humanos
3.
J Biol Chem ; 292(34): 13914-13924, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28696258

RESUMO

In humans, nonhomologous DNA end-joining (NHEJ) is the major pathway by which DNA double-strand breaks are repaired. Recognition of each broken DNA end by the DNA repair protein Ku is the first step in NHEJ, followed by the iterative binding of nucleases, DNA polymerases, and the XRCC4-DNA ligase IV (X4-LIV) complex in an order influenced by the configuration of the two DNA ends at the break site. The endonuclease Artemis improves joining efficiency by functioning in a complex with DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) that carries out endonucleolytic cleavage of 5' and 3' overhangs. Previously, we observed that X4-LIV alone can stimulate Artemis activity on 3' overhangs, but this DNA-PKcs-independent endonuclease activity of Artemis awaited confirmation. Here, using in vitro nuclease and ligation assays, we find that stimulation of Artemis nuclease activity by X4-LIV and the efficiency of blunt-end ligation are determined by structural configurations at the DNA end. Specifically, X4-LIV stimulated Artemis to cut near the end of 3' overhangs without the involvement of other NHEJ proteins. Of note, this ligase complex is not able to stimulate Artemis activity at hairpins or at 5' overhangs. We also found that X4-LIV and DNA-PKcs interfere with one another with respect to stimulating Artemis activity at 3' overhangs, favoring the view that these NHEJ proteins are sequentially rather than concurrently recruited to DNA ends. These data suggest specific functional and positional relationships among these components that explain genetic and molecular features of NHEJ and V(D)J recombination within cells.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Modelos Moleculares , Reparo de DNA por Recombinação , Recombinação V(D)J , Animais , Linhagem Celular , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/genética , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Endonucleases/química , Células HeLa , Humanos , Cinética , Mariposas , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Especificidade por Substrato
4.
J Biol Chem ; 289(11): 7825-34, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24500713

RESUMO

ARTEMIS is a member of the metallo-ß-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5'- and 3'-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5'-exonuclease activity on single-stranded DNA and 5'-overhangs, because this 5'-exonuclease is not dependent upon DNA-PKcs. Here, we show that the 5'-exonuclease and the endonuclease activities co-purify. Second, we show that a point mutant of ARTEMIS at a putative active site residue (H115A) markedly reduces both the endonuclease activity and the 5'-exonuclease activity. Third, divalent cation effects on the 5'-exonuclease and the endonuclease parallel one another. Fourth, both the endonuclease activity and 5'-exonuclease activity of ARTEMIS can be blocked in parallel by small molecule inhibitors, which do not block unrelated nucleases. We conclude that the 5'-exonuclease is intrinsic to ARTEMIS, making it relevant to the role of ARTEMIS in nonhomologous DNA end joining.


Assuntos
DNA/química , Desoxirribonuclease I/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidases/química , Cromatografia , Dicroísmo Circular , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA , Endonucleases , Células HEK293 , Humanos , Mutagênese , Proteínas Nucleares/genética , Oligonucleotídeos/química , Mutação Puntual , Transfecção
5.
DNA Repair (Amst) ; 120: 103422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332285

RESUMO

Artemis is a 692 aa nuclease that is essential for opening hairpins during vertebrate V(D)J recombination. Artemis is also important in the DNA repair of double-strand breaks via the nonhomologous DNA end joining (NHEJ) pathway. Therefore, absence of Artemis has been shown to result not only in the blockage of lymphocyte development in vertebrates, but also sensitivity of organisms and cells to double-strand break-inducing events that arise in the course of normal metabolism. Nonhomologous DNA end joining (NHEJ) is the major pathway for the repair of double-strand DNA breaks in most vertebrate cells during most of the cell cycle, including in resting cells. Artemis is the primary nuclease for resection of damaged DNA at double-strand breaks. Artemis alone is inactive as an endonuclease, though it has 5'-exonuclease activity. The endonuclease activity requires physical interaction with DNA-PKcs and subsequent activation steps. Truncation of the C-terminal half of Artemis permits Artemis to be active, even without DNA-PKcs. Here we create a systematic set of deletions from the Artemis C-terminus to determine the minimal extent of C-terminal deletion for Artemis to function in a DNA-PKcs-independent manner. We discuss these data in the context of recent structural studies. The results will be useful in future studies to determine the full range of functions of the C-terminal region of Artemis in the regulation of its endonuclease activity.


Assuntos
Proteínas de Ligação a DNA , Proteínas Nucleares , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Endonucleases/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , DNA/metabolismo
6.
J Mol Biol ; 434(23): 167858, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270581

RESUMO

Pathologic chromosome breaks occur in human dividing cells ∼10 times per day, and physiologic breaks occur in each lymphoid cell many additional times per day. Nonhomologous DNA end joining (NHEJ) is the major pathway for the repair of all of these double-strand breaks (DSBs) during most of the cell cycle. Nearly all broken DNA ends require trimming before they can be suitable for joining by ligation. Artemis is the major nuclease for this purpose. Artemis is tightly regulated by one of the largest protein kinases, which tethers Artemis to its surface. This kinase is called DNA-dependent protein kinase catalytic subunit (or DNA-PKcs) because it is only active when it encounters a broken DNA end. With this activation, DNA-PKcs permits the Artemis catalytic domain to enter a large cavity in the center of DNA-PKcs. Given this remarkably tight supervision of Artemis by DNA-PKcs, it is an appropriate time to ask what we know about the Artemis:DNA-PKcs complex, as we integrate recent structural information with the biochemistry of the complex and how this relates to other NHEJ proteins and to V(D)J recombination in the immune system.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Endonucleases , Humanos , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo
7.
FEBS J ; 288(24): 7230-7242, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33786971

RESUMO

DNA polymerases are important enzymes involved in DNA replication and repair. Based on sequence homology, DNA polymerases have been grouped into distinct families, which are A, B, X, and Y. The Pol X family consists of four members: Pol λ, µ, and ß and terminal transferase or TdT. Members of the family X are involved in base excision repair, nonhomologous end joining (NHEJ), and V(D)J recombination. One of the most interesting pol X family members is DNA polymerase µ, discovered back in 2000. Subsequent studies established the importance of Pol µ as a repair polymerase in NHEJ and its interactions with the other proteins of the NHEJ machinery. Pol µ has a number of interesting properties, which sets it apart from the other known DNA polymerases, including its ability to synthesize DNA from an unpaired primer terminus as well in the complete absence of a template strand (terminal transferase activity). Another standout property of Pol µ is its reduced ability to discriminate between ribonucleotides and deoxyribonucleotides and its ability to utilize both ribonucleotides and deoxyribonucleotides as substrates during the gap-filling stage of NHEJ. In this review, we provide a brief overview of Pol µ in double-strand break repair and the current knowledge on its various functional aspects.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Animais , DNA Polimerase Dirigida por DNA/química , Humanos , Modelos Moleculares , Especificidade por Substrato
8.
Cancer Rep (Hoboken) ; 4(3): e1341, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33496064

RESUMO

BACKGROUND: DNA double-strand breaks (DSBs) are harmful to the cell as it could lead to genomic instability and cell death when left unrepaired. Homologous recombination and nonhomologous end-joining (NHEJ) are two major DSB repair pathways, responsible for ensuring genome integrity in mammals. There have been multiple efforts using small molecule inhibitors to target these DNA repair pathways in cancers. SCR7 is a very well-studied anticancer molecule that blocks NHEJ by targeting one of the critical enzymes, Ligase IV. RECENT FINDINGS: In this review, we have highlighted the anticancer effects of SCR7 as a single agent and in combination with other chemotherapeutic agents and radiation. SCR7 blocked NHEJ effectively both in vitro and ex vivo. SCR7 has been used for biochemical studies like chromosomal territory resetting and in understanding the role of repair proteins in cell cycle phases. Various forms of SCR7 and its derivatives are discussed. SCR7 is also used as a potent biochemical inhibitor of NHEJ, which has found its application in improving genome editing using a CRISPR-Cas system. CONCLUSION: SCR7 is a potent NHEJ inhibitor with unique properties and wide applications as an anticancer agent. Most importantly, SCR7 has become a handy aid for improving genome editing across different model systems.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Pirimidinas/farmacologia , Bases de Schiff/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , DNA Ligase Dependente de ATP/antagonistas & inibidores , DNA Ligase Dependente de ATP/metabolismo , Modelos Animais de Doenças , Edição de Genes/métodos , Humanos , Camundongos , Neoplasias/genética , Pirimidinas/uso terapêutico , Bases de Schiff/uso terapêutico
9.
DNA Repair (Amst) ; 106: 103193, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339948

RESUMO

The nonhomologous DNA end joining pathway is required for repair of most double-strand breaks in the mammalian genome. Here we use a purified biochemical NHEJ system to compare the joining of free DNA with recombinant mononucleosomal and dinucleosomal substrates to investigate ligation and local DNA end resection. We find that the nucleosomal state permits ligation in a manner dependent on the presence of free DNA flanking the nucleosome core particle. Local resection at DNA ends by the Artemis:DNA-PKcs nuclease complex is completely suppressed in all mononucleosome substrates regardless of flanking DNA up to a length of 14 bp. Like mononucleosomes, dinucleosomes lacking flanking free DNA are not joined. Therefore, the nucleosomal state imposes severe constraints on NHEJ nuclease and ligase activities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Nucleossomos/metabolismo , Animais , Linhagem Celular , DNA/metabolismo , DNA Ligases/metabolismo , Células HeLa , Humanos , Spodoptera/metabolismo , Xenopus/metabolismo
10.
DNA Repair (Amst) ; 106: 103177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34325086

RESUMO

Repair of DNA double-strand breaks (DSBs) and its regulation are tightly integrated inside cells. Homologous recombination, nonhomologous end joining and microhomology mediated end joining are three major DSB repair pathways in mammalian cells. Targeting proteins associated with these repair pathways using small molecule inhibitors can prove effective in tumors, especially those with deregulated repair. Sensitization of cancer to current age therapy including radio and chemotherapy, using small molecule inhibitors is promising and warrant further development. Although several are under clinical trial, till date no repair inhibitor is approved for commercial use in cancer patients, with the exception of PARP inhibitors targeting single-strand break repair. Based on molecular profiling of repair proteins, better prognostic and therapeutic output can be achieved in patients. In the present review, we highlight the different mechanisms of DSB repair, chromatin dynamics to provide repair accessibility and modulation of inhibitors in association with molecular profiling and current gold standard treatment modalities for cancer.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo de DNA por Recombinação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , DNA/efeitos dos fármacos , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
11.
Gene ; 763: 144997, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32783992

RESUMO

The CRISPR-Cas system currently stands as one of the best multifaceted tools for site-specific genome engineering in mammals. An important aspect of research in this field focusses on improving the specificity and efficacy of precise genome editing in multiple model systems. The cornerstone of this mini-review is one of the extensively investigated small molecule inhibitor, SCR7, which abrogates NHEJ, a Ligase IV-dependent DSB repair pathway, thus guiding integration of the foreign DNA fragment via the more precise homology directed repair during genome editing. One of our recent studies sheds light on properties of different forms of SCR7. Here, we give a succinct account on the use of SCR7 and its different forms in CRISPR-Cas system, highlighting their chemical properties and biological relevance as potent efficiency-enhancing CRISPR tools.


Assuntos
Sistemas CRISPR-Cas , Inibidores Enzimáticos/farmacologia , Edição de Genes/métodos , Pirimidinas/farmacologia , Reparo de DNA por Recombinação/efeitos dos fármacos , Bases de Schiff/farmacologia , Animais , DNA Ligase Dependente de ATP/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Pirimidinas/química , Bases de Schiff/química
12.
Mol Cell Biol ; 39(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31591143

RESUMO

DNA damage responses (DDR) to double-strand breaks (DSBs) alter cellular transcription programs at the genome-wide level. Through processes that are less well understood, DSBs also alter transcriptional responses locally, which may be important for efficient DSB repair. Here, we developed an approach to elucidate the cis-acting responses to DSBs in G1 phase cells. We found that DSBs within a gene body silence its expression, as well as the transcription of local undamaged genes at a distance defined by the spread of γ-H2AX from the DSB. Importantly, DSBs not only repress ongoing transcription but also block the inducible expression of regional genes. DSB-mediated transcriptional repression depends on DDR signaling but does not require the generation of inaccessible chromatin. Our findings demonstrate that in G1 phase cells, DDR signaling establishes a robust and extensive region of transcriptional repression spreading from DSB sites and introduce an approach to study the mechanistic impact of targeted DNA breaks in nearly any chromatin environment.


Assuntos
Reparo do DNA/genética , Fase G1/genética , Elementos Silenciadores Transcricionais/genética , Animais , Ciclo Celular/genética , Linhagem Celular , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/fisiologia , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fase G1/fisiologia , Humanos , Camundongos , Elementos Reguladores de Transcrição/genética , Elementos Reguladores de Transcrição/fisiologia , Elementos Silenciadores Transcricionais/fisiologia
13.
DNA Res ; 24(2): 117-128, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431013

RESUMO

DNA double-strand breaks (DSBs) are mostly repaired by nonhomologous end joining (NHEJ) and homologous recombination (HR) in higher eukaryotes. In contrast, HR-mediated DSB repair is the major double-strand break repair pathway in lower order organisms such as bacteria and yeast. Penaeus monodon, commonly known as black tiger shrimp, is one of the economically important crustaceans facing large-scale mortality due to exposure to infectious diseases. The animals can also get exposed to chemical mutagens under the culture conditions as well as in wild. Although DSB repair mechanisms have been described in mammals and some invertebrates, its mechanism is unknown in the shrimp species. In the present study, we show that HR-mediated DSB repair is the predominant mode of repair in P. monodon. Robust repair was observed at a temperature of 30 °C, when 2 µg of cell-free extract derived from hepatopancreas was used for the study. Although HR occurred through both reciprocal recombination and gene conversion, the latter was predominant when the bacterial colonies containing recombinants were evaluated. Unlike mammals, NHEJ-mediated DSB repair was undetectable in P. monodon. However, we could detect evidence for an alternative mode of NHEJ that uses microhomology, termed as microhomology-mediated end joining (MMEJ). Interestingly, unlike HR, MMEJ was predominant at lower temperatures. Therefore, the results suggest that, while HR is major DSB repair pathway in shrimp, MMEJ also plays a role in ensuring the continuity and stability of the genome.


Assuntos
Quebras de DNA de Cadeia Dupla , Penaeidae/genética , Reparo de DNA por Recombinação , Animais , Temperatura Corporal , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Penaeidae/fisiologia
14.
FEBS Open Bio ; 7(12): 1854-1863, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29226073

RESUMO

Molecularly targeted therapies have high specificity and significant cancer-killing effect. However, their antitumor effect might be greatly diminished by variation in even a single amino acid in the target site, as it occurs, for example, as a consequence of SNPs. Increasing evidence suggests that the DNA repair protein Ku80 is an attractive target molecule for the development of next-generation radiosensitizers for human cancers. However, the localization, post-translational modifications (PTMs), and complex formation of Ku80 have not been elucidated in canines. In this study, for the first time, we cloned, sequenced, and characterized canine Ku80 cDNA. Our data show that canine Ku80 localizes in the nuclei of interphase cells and is quickly recruited at laser-induced double-strand break sites. Comparative analysis shows that canine Ku80 had only 82.3% amino acid identity with the homologous human protein, while the nuclear localization signal (NLS) in human and canine Ku80 is evolutionarily conserved. Notably, some predicted PTM sites, including one acetylation site and one sumoylation site within the NLS, are conserved in the two species. These findings suggest that the spatial and temporal regulation of Ku80 might be conserved in humans and canines. However, our data indicate that the expression of Ku80 is considerably lower in the canine cell lines examined than in human cell lines. These important findings might be useful to better understand the mechanism of the Ku80-dependent DNA repair and for the development of potential next-generation radiosensitizers targeting common targets in human and canine cancers.

15.
Mutat Res ; 763-764: 28-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24694657

RESUMO

In order to evaluate the ability of a representative polycyclic aromatic hydrocarbon (PAH) and PAH-containing complex mixtures to induce double strand DNA breaks (DSBs) and repair of damaged DNA in human embryonic lung fibroblasts (HEL12469 cells), we investigated the effect of benzo[a]pyrene (B[a]P) and extractable organic matter (EOM) from ambient air particles <2.5µm (PM2.5) on nonhomologous DNA end joining (NHEJ) and induction of stable chromosome aberrations (CAs). PM2.5 was collected in winter and summer 2011 in two Czech cities differing in levels and sources of air pollutants. The cells were treated for 24h with the following concentrations of tested chemicals: B[a]P: 1µM, 10µM, 25µM; EOMs: 1µg/ml, 10µg/ml, 25µg/ml. We tested several endpoints representing key steps leading from DSBs to the formation of CAs including histone H2AX phosphorylation, levels of proteins Ku70, Ku80 and XRCC4 participating in NHEJ, in vitro ligation activity of nuclear extracts of the HEL12469 cells and the frequency of stable CAs assessed by whole chromosome painting of chromosomes 1, 2, 4, 5, 7 and 17 using fluorescence in situ hybridization. Our results show that 25µM of B[a]P and most of the tested doses of EOMs induced DSBs as indicated by H2AX phosphorylation. DNA damage was accompanied by induction of XRCC4 expression and an increased frequency of CAs. Translocations most frequently affected chromosome 7. We observed only a weak induction of Ku70/80 expression as well as ligation activity of nuclear extracts. In summary, our data suggest the induction of DSBs and NHEJ after treatment of human embryonic lung fibroblasts with B[a]P and complex mixtures containing PAHs.


Assuntos
Benzo(a)pireno/toxicidade , Cromossomos Humanos/metabolismo , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Poluentes Ambientais/toxicidade , Fibroblastos/metabolismo , Pulmão/metabolismo , Translocação Genética/efeitos dos fármacos , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular , Cromossomos Humanos/genética , República Tcheca , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/patologia , Histonas/genética , Histonas/metabolismo , Humanos , Autoantígeno Ku , Pulmão/patologia , Material Particulado , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Reforma Urbana
16.
Int J Biomed Sci ; 6(3): 182-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23675192

RESUMO

AIM: Natural products discovered from medicinal plants have played an important role in the treatment of cancer. Methyl angolensate (MA), a tetranortriterpenoid obtained from the root callus of Indian Redwood tree, Soymida febrifuga Roxb. (A.Juss) was tested for its anticancer properties on breast cancer cells. METHODS: Cell viability was tested using trypan blue, MTT and LDH assays. Tritiated thymidine assay and flowcytometry were used to study effect of MA on cell proliferation. The activation of apoptosis was checked by annexin V and JC-1 staining followed by FACS analysis. Immunoblotting analysis was used for studying expression of apoptotic and DNA double strand break repair proteins. RESULTS: We find that MA inhibited the growth of breast cancer cell line, T47D in a time- and dose-dependent manner. MA treatment led to the inhibition of cell proliferation as detected by tritiated thymidine assay and flowcytometry. Further, MA treated cells exhibited typical apoptotic morphological changes and led to the accumulation of subG1 peak in cell cycle distribution. The induction of apoptosis was further confirmed both by annexin V staining and JC1 staining. We also find that MA activates MAP kinase pathway to induce apoptosis. Besides, we find a time dependent activation followed by degradation of DNA double-strand break repair proteins upon treatment with MA. CONCLUSION: These results suggest that MA induces cytotoxicity in breast cancer cells. Further, the altered expression of DSB repair proteins in MA treated cells may control the induction of apoptosis in these cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA