Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.095
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 36: 359-383, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692593

RESUMO

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.


Assuntos
Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Biocatálise , Plasticidade Celular , Receptores ErbB/química , Humanos , Transdução de Sinais , Fatores de Tempo
2.
Mol Cell ; 81(8): 1682-1697.e7, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33651988

RESUMO

The coactivator p300/CREB-binding protein (CBP) regulates genes by facilitating the assembly of transcriptional machinery and by acetylating histones and other factors. However, it remains mostly unclear how both functions of p300 are dynamically coordinated during gene control. Here, we showed that p300 can orchestrate two functions through the formation of dynamic clusters with certain transcription factors (TFs), which is mediated by the interactions between a TF's transactivation domain (TAD) and the intrinsically disordered regions of p300. Co-condensation can enable spatially defined, all-or-none activation of p300's catalytic activity, priming the recruitment of coactivators, including Brd4. We showed that co-condensation can modulate transcriptional initiation rate and burst duration of target genes, underlying nonlinear gene regulatory functions. Such modulation is consistent with how p300 might shape gene bursting kinetics globally. Altogether, these results suggest an intriguing gene regulation mechanism, in which TF and p300 co-condensation contributes to transcriptional bursting regulation and cooperative gene control.


Assuntos
Proteína p300 Associada a E1A/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética , Acetilação , Animais , Células CHO , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Cricetulus , Regulação da Expressão Gênica/genética , Células HEK293 , Histonas/metabolismo , Humanos , Cinética , Camundongos , Transativadores/metabolismo
3.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39023143

RESUMO

Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.


Assuntos
Decídua , Implantação do Embrião , Animais , Feminino , Implantação do Embrião/fisiologia , Gravidez , Camundongos , Útero/fisiologia , Embrião de Mamíferos , Camundongos Knockout , Imageamento Tridimensional/métodos , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 121(4): e2306953121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227651

RESUMO

We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle via the interaction with light pulses that generate cubic and inverted potentials. We show that this approach allows to operate on sufficiently short time- and length scales to beat decoherence in a regime accessible in state-of-the-art experiments. Specifically, we predict the observation of single-particle interference of a nanoparticle with a mass above 108 atomic mass units delocalized by several nanometers, on timescales of milliseconds. The proposed experiment uses only optical and electrostatic control, and can be performed at about 10-10 mbar and at room temperature. We discuss the prospect of this method for coherently splitting the wavepacket of massive dielectric objects without using either projective measurements or an internal level structure.

5.
Proc Natl Acad Sci U S A ; 121(6): e2313258121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300869

RESUMO

We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.

6.
Proc Natl Acad Sci U S A ; 121(10): e2307876121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422017

RESUMO

During real-time language comprehension, our minds rapidly decode complex meanings from sequences of words. The difficulty of doing so is known to be related to words' contextual predictability, but what cognitive processes do these predictability effects reflect? In one view, predictability effects reflect facilitation due to anticipatory processing of words that are predictable from context. This view predicts a linear effect of predictability on processing demand. In another view, predictability effects reflect the costs of probabilistic inference over sentence interpretations. This view predicts either a logarithmic or a superlogarithmic effect of predictability on processing demand, depending on whether it assumes pressures toward a uniform distribution of information over time. The empirical record is currently mixed. Here, we revisit this question at scale: We analyze six reading datasets, estimate next-word probabilities with diverse statistical language models, and model reading times using recent advances in nonlinear regression. Results support a logarithmic effect of word predictability on processing difficulty, which favors probabilistic inference as a key component of human language processing.


Assuntos
Compreensão , Idioma , Humanos , Modelos Estatísticos
7.
Proc Natl Acad Sci U S A ; 121(12): e2316910121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483985

RESUMO

Weyl semimetals resulting from either inversion (P) or time-reversal (T) symmetry breaking have been revealed to show the record-breaking large optical response due to intense Berry curvature of Weyl-node pairs. Different classes of Weyl semimetals with both P and T symmetry breaking potentially exhibit optical magnetoelectric (ME) responses, which are essentially distinct from the previously observed optical responses in conventional Weyl semimetals, leading to the versatile functions such as directional dependence for light propagation and gyrotropic effects. However, such optical ME phenomena of (semi)metallic systems have remained elusive so far. Here, we show the large nonlinear optical ME response in noncentrosymmetric magnetic Weyl semimetal PrAlGe, in which the polar structural asymmetry and ferromagnetic ordering break P and T symmetry. We observe the giant second harmonic generation (SHG) arising from the P symmetry breaking in the paramagnetic phase, being comparable to the largest SHG response reported in Weyl semimetal TaAs. In the ferromagnetically ordered phase, it is found that interference between this nonmagnetic SHG and the magnetically induced SHG emerging due to both P and T symmetry breaking results in the magnetic field switching of SHG intensity. Furthermore, such an interference effect critically depends on the light-propagating direction. The corresponding magnetically induced nonlinear susceptibility is significantly larger than the prototypical ME material, manifesting the existence of the strong nonlinear dynamical ME coupling. The present findings establish the unique optical functionality of P- and T-symmetry broken ME topological semimetals.

8.
Proc Natl Acad Sci U S A ; 121(36): e2401604121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190346

RESUMO

Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.


Assuntos
Padronização Corporal , Animais , Padronização Corporal/fisiologia , Relógios Biológicos/fisiologia , Embrião não Mamífero/fisiologia , Transdução de Sinais/fisiologia , Somitos/embriologia , Mesoderma/embriologia , Modelos Biológicos
9.
Proc Natl Acad Sci U S A ; 121(11): e2312942121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437548

RESUMO

Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.


Assuntos
Reprogramação Celular , Redes Reguladoras de Genes , Humanos , Reprogramação Celular/genética , Diferenciação Celular , Controle Comportamental , Aprendizado de Máquina
10.
Proc Natl Acad Sci U S A ; 121(32): e2318805121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083417

RESUMO

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Cadeias de Markov , Animais , Caenorhabditis elegans/fisiologia , Comportamento Animal/fisiologia , Modelos Biológicos , Movimento/fisiologia
11.
Proc Natl Acad Sci U S A ; 121(29): e2401200121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985758

RESUMO

Transport networks, such as vasculature or river networks, provide key functions in organisms and the environment. They usually contain loops whose significance for the stability and robustness of the network is well documented. However, the dynamics of their formation is usually not considered. Such structures often grow in response to the gradient of an external field. During evolution, extending branches compete for the available flux of the field, which leads to effective repulsion between them and screening of the shorter ones. Yet, in remarkably diverse processes, from unstable fluid flows to the canal system of jellyfish, loops suddenly form near the breakthrough when the longest branch reaches the boundary of the system. We provide a physical explanation for this universal behavior. Using a 1D model, we explain that the appearance of effective attractive forces results from the field drop inside the leading finger as it approaches the outlet. Furthermore, we numerically study the interactions between two fingers, including screening in the system and its disappearance near the breakthrough. Finally, we perform simulations of the temporal evolution of the fingers to show how revival and attraction to the longest finger leads to dynamic loop formation. We compare the simulations to the experiments and find that the dynamics of the shorter finger are well reproduced. Our results demonstrate that reconnection is a prevalent phenomenon in systems driven by diffusive fluxes, occurring both when the ratio of the mobility inside the growing structure to the mobility outside is low and near the breakthrough.

12.
Proc Natl Acad Sci U S A ; 121(17): e2319770121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635636

RESUMO

A fundamental question associated with chirality is how mixtures containing equal amounts of interconverting enantiomers can spontaneously convert to systems enriched in only one of them. Enantiomers typically have similar chemical properties, but can exhibit distinct reactivity under specific conditions, and these differences can be used to bias the system's composition in favor of one enantiomer. Transport properties are also expected to differ for enantiomers in chiral solvents, but the role of such differences in chiral symmetry breaking has not been clarified yet. In this work, we develop a theoretical framework to show that asymmetry in diffusion properties can trigger a spontaneous and selective symmetry breaking in mixtures of enantiomers. We derive a generic evolution equation for the enantiomeric excess in a chiral solvent. This equation shows that the relative stability of homochiral domains is dictated by the difference of diffusion coefficients of the two enantiomers. Consequently, deracemization toward a specific enantiomeric excess can be achieved when this difference is large enough. These results hold significant implications for our understanding of chiral symmetry breaking.

13.
Proc Natl Acad Sci U S A ; 121(23): e2402660121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38820001

RESUMO

Molecular chirality has long been monitored in the frequency domain in the ultraviolet, visible, and infrared regimes. Recently developed time-domain approaches can detect time-dependent chiral dynamics by enhancing intrinsically weak chiral signals. Even-order nonlinear signals in chiral molecules have gained attention thanks to their existence in the electric dipole approximation, without relying on the weaker higher-order multipole interactions. We illustrate the optimization of temporal polarization pulse-shaping in various frequency ranges (infrared/optical and optical/X ray) to enhance chiral nonlinear signals. These signals can be recast as an overlap integral of matter and field pseudoscalars which contain the relevant chiral information. Simulations are carried out for second- and fourth-order nonlinear spectroscopies in L-tryptophan.

14.
Proc Natl Acad Sci U S A ; 121(15): e2307525121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557189

RESUMO

Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.


Assuntos
Mudança Climática , Clima , Animais , Aves/fisiologia , Ecossistema , América do Norte
15.
Proc Natl Acad Sci U S A ; 121(13): e2313629121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513103

RESUMO

We demonstrate an exceptional ability of a high-polarization 3D ferroelectric liquid to form freely suspended fluid fibers at room temperature. Unlike fluid threads in modulated smectics and columnar phases, where translational order is a prerequisite for forming liquid fibers, recently discovered ferroelectric nematic forms fibers with solely orientational molecular order. Additional stabilization mechanisms based on the polar nature of the mesophase are required for this. We propose a model for such a mechanism and show that these fibers demonstrate an exceptional nonlinear optical response and exhibit electric field-driven instabilities.

16.
Proc Natl Acad Sci U S A ; 121(27): e2407570121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38941275

RESUMO

Although mechanically interlocked molecules (MIMs) display unique properties and functions associated with their intricate connectivity, limited assembly strategies are available for their synthesis. Herein, we presented a synergistic assembly strategy based on coordination and noncovalent interactions (π-π stacking and CH⋯π interactions) to selectively synthesize molecular closed three-link chains ([Formula: see text] links), highly entangled figure-eight knots ([Formula: see text] knots), trefoil knot ([Formula: see text] knot), and Borromean ring ([Formula: see text] link). [Formula: see text] links can be created by the strategic assembly of nonlinear multicurved ligands incorporating a furan or phenyl group with the long binuclear half-sandwich organometallic Cp*RhIII (Cp* = η5-pentamethylcyclopentadienyl) clip. However, utilizing much shorter binuclear Cp*RhIII units for union with the 2,6-naphthyl-containing ligand led to a [Formula: see text] knot because of the increased π-π stacking interactions between four consecutive stacked layers and CH⋯π interactions. Weakening such π-π stacking interactions resulted in a [Formula: see text] knot. The universality of this synergistic assembly strategy for building [Formula: see text] knots was verified by utilizing a 1,5-naphthyl-containing ligand. Quantitative conversion between the [Formula: see text] knot and the simple macrocycle species was accomplished by adjusting the concentrations monitored by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Furthermore, increasing the stiff π-conjugated area of the binuclear unit afforded molecular Borromean ring, and this topology is a topological isomer of the [Formula: see text] link. These artificial metalla-links and metalla-knots were confirmed by single-crystal X-ray diffraction, NMR and ESI-MS. The results offer a potent strategy for building higher-order MIMs and emphasize the critical role that noncovalent interactions play in creating sophisticated topologies.

17.
Proc Natl Acad Sci U S A ; 120(31): e2305027120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37490539

RESUMO

Nonlinear disordered systems are not only a model system for fundamental studies but also in high demand for practical applications. However, optical nonlinearity based on intrinsic material response is weak in random scattering systems. Here, we propose and experimentally realize a highly nonlinear mapping between the scattering potential and the emerging light of a reconfigurable multiple-scattering cavity. A quantitative analysis of the degree of nonlinearity reveals its dependence on the number of scattering events. The effective order of nonlinear mapping can be tuned over a wide range at low optical lower. The strong nonlinear mapping enhances output intensity fluctuations and long-range correlations. The flexibility, robustness, and energy efficiency of our approach provides a versatile platform for exploring such nonlinear mappings for various applications.

18.
Proc Natl Acad Sci U S A ; 120(9): e2219208120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827265

RESUMO

The quantization of the electromagnetic field leads directly to the existence of quantum mechanical states, called Fock states, with an exact integer number of photons. Despite these fundamental states being long-understood, and despite their many potential applications, generating them is largely an open problem. For example, at optical frequencies, it is challenging to deterministically generate Fock states of order two and beyond. Here, we predict the existence of an effect in nonlinear optics, which enables the deterministic generation of large Fock states at arbitrary frequencies. The effect, which we call an n-photon bound state in the continuum, is one in which a photonic resonance (such as a cavity mode) becomes lossless when a precise number of photons n is inside the resonance. Based on analytical theory and numerical simulations, we show that these bound states enable a remarkable phenomenon in which a coherent state of light, when injected into a system supporting this bound state, can spontaneously evolve into a Fock state of a controllable photon number. This effect is also directly applicable for creating (highly) squeezed states of light, whose photon number fluctuations are (far) below the value expected from classical physics (i.e., shot noise). We suggest several examples of systems to experimentally realize the effects predicted here in nonlinear nanophotonic systems, showing examples of generating both optical Fock states with large n (n >  10), as well as more macroscopic photonic states with very large squeezing, with over 90% less noise (10 dB) than the classical value associated with shot noise.

19.
Proc Natl Acad Sci U S A ; 120(28): e2304981120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406100

RESUMO

How the behavior of cells emerges from their constituent subcellular biochemical and physical parts is an outstanding challenge at the intersection of biology and physics. A remarkable example of single-cell behavior occurs in the ciliate Lacrymaria olor, which hunts for its prey via rapid movements and protrusions of a slender neck, many times the size of the original cell body. The dynamics of this cell neck is powered by a coat of cilia across its length and tip. How a cell can program this active filamentous structure to produce desirable behaviors like search and homing to a target remains unknown. Here, we present an active filament model that allows us to uncover how a "program" (time sequence of active forcing) leads to "behavior" (filament shape dynamics). Our model captures two key features of this system-time-varying activity patterns (extension and compression cycles) and active stresses that are uniquely aligned with the filament geometry-a "follower force" constraint. We show that active filaments under deterministic, time-varying follower forces display rich behaviors including periodic and aperiodic dynamics over long times. We further show that aperiodicity occurs due to a transition to chaos in regions of a biologically accessible parameter space. We also identify a simple nonlinear iterated map of filament shape that approximately predicts long-term behavior suggesting simple, artificial "programs" for filament functions such as homing and searching space. Last, we directly measure the statistical properties of biological programs in L. olor, enabling comparisons between model predictions and experiments.


Assuntos
Citoesqueleto , Modelos Biológicos , Cílios , Matemática
20.
Proc Natl Acad Sci U S A ; 120(37): e2305380120, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669372

RESUMO

Proactively programming materials toward target nonlinear mechanical behaviors is crucial to realize customizable functions for advanced devices and systems, which arouses persistent explorations for rapid and efficient inverse design strategies. Herein, we propose a "mechanical Fourier transform" strategy to program mechanical behaviors of materials by mimicking the concept of Fourier transform. In this strategy, an arbitrary target force-displacement curve is decomposed into multiple cosine curves and a constant curve, each of which is realized by a rationally designed multistable module in an array-structured metamaterial. Various target curves with distinct shapes can be rapidly programmed and reprogrammed through only amplitude modulation on the modules. Two exemplary metamaterials are demonstrated to validate the strategy with a macroscale prototype based on magnet lattice and a microscale prototype based on an etched silicon wafer. This strategy applies to a variety of scales, constituents, and structures, and paves a way for the property programming of materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA