Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765440

RESUMO

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Assuntos
Ácido Glutâmico/metabolismo , Mastócitos/metabolismo , Neurônios/metabolismo , Pele/metabolismo , Animais , Células Cultivadas , Dermatite/metabolismo , Dermatite/patologia , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Células de Langerhans/citologia , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/metabolismo , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Pele/patologia , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacologia
2.
Cell Mol Neurobiol ; 41(2): 247-262, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32306148

RESUMO

C-nociceptors (C-Ncs) and non-nociceptive C-low threshold mechanoreceptors (C-LTMRs) are two subpopulations of small unmyelinated non-peptidergic C-type neurons of the dorsal root ganglia (DRGs) with central projections displaying a specific pattern of termination in the spinal cord dorsal horn. Although these two subpopulations exist in several animals, remarkable neurochemical differences occur between mammals, particularly rat/humans from one side and mouse from the other. Mouse is widely investigated by transcriptomics. Therefore, we here studied the immunocytochemistry of murine C-type DRG neurons and their central terminals in spinal lamina II at light and electron microscopic levels. We used a panel of markers for peptidergic (CGRP), non-peptidergic (IB4), nociceptive (TRPV1), non-nociceptive (VGLUT3) C-type neurons and two strains of transgenic mice: the TAFA4Venus knock-in mouse to localize the TAFA4+ C-LTMRs, and a genetically engineered ginip mouse that allows an inducible and tissue-specific ablation of the DRG neurons expressing GINIP, a key modulator of GABABR-mediated analgesia. We confirmed that IB4 and TAFA4 did not coexist in small non-peptidergic C-type DRG neurons and separately tagged the C-Ncs and the C-LTMRs. We then showed that TRPV1 was expressed in only about 7% of the IB4+ non-peptidergic C-Ncs and their type Ia glomerular terminals within lamina II. Notably, the selective ablation of GINIP did not affect these neurons, whereas it reduced IB4 labeling in the medial part of lamina II and the density of C-LTMRs glomerular terminals to about one half throughout the entire lamina. We discuss the significance of these findings for interspecies differences and functional relevance.


Assuntos
Mecanorreceptores/ultraestrutura , Bainha de Mielina/ultraestrutura , Nociceptores/ultraestrutura , Peptídeos/metabolismo , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Citocinas/metabolismo , Gânglios Espinais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Transgênicos , Lectinas de Plantas/metabolismo , Células Receptoras Sensoriais/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Canais de Cátion TRPV/metabolismo
3.
J Anat ; 237(5): 988-997, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32579747

RESUMO

Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.


Assuntos
Diabetes Mellitus Experimental/patologia , Gânglios Espinais/ultraestrutura , Neuroglia/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glicoproteínas/metabolismo , Masculino , Camundongos , Neuroglia/enzimologia
4.
J Neurosci ; 37(20): 5111-5122, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438966

RESUMO

Cancer-induced bone pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates. Even when ongoing pain is well controlled, patients can suffer breakthrough pain (BTP), episodic severe pain that "breaks through" the medication. We developed a novel model of cancer-induced BTP using female rats with mammary adenocarcinoma cells sealed within the tibia. We demonstrated previously that rats with bone cancer learn to prefer a context paired with saphenous nerve block to elicit pain relief (i.e., conditioned place preference, CPP), revealing the presence of ongoing pain. Treatment with systemic morphine abolished CPP to saphenous nerve block, demonstrating control of ongoing pain. Here, we show that pairing BTP induced by experimenter-induced movement of the tumor-bearing hindlimb with a context produces conditioned place avoidance (CPA) in rats treated with morphine to control ongoing pain, consistent with clinical observation of BTP. Preventing movement-induced afferent input by saphenous nerve block before, but not after, hindlimb movement blocked movement-induced BTP. Ablation of isolectin B4 (IB4)-binding, but not TRPV1+, sensory afferents eliminated movement-induced BTP, suggesting that input from IB4-binding fibers mediates BTP. Identification of potential molecular targets specific to this population of fibers may allow for the development of peripherally restricted analgesics that control BTP and improve quality of life in patients with skeletal metastases.SIGNIFICANCE STATEMENT We present a novel preclinical measure of movement-induced breakthrough pain (BTP) that is observed in the presence of morphine controlling ongoing pain. Blockade of sensory input before movement prevented BTP, whereas nerve block after movement failed to reverse BTP. These observations indicate that blocking peripheral sensory input may prevent BTP and targeting central sites may be required for pain relief once BTP has been initiated. Preventing sensory input from TRPV1-expressing fibers failed to alter movement-induced BTP. In contrast, preventing sensory input from isolectin B4 (IB4)-binding fibers blocked movement-induced BTP. Therefore, examining molecular targets on this population of nociceptive fibers may prove useful for developing an improved strategy for preventing BTP in cancer patients with skeletal metastases.


Assuntos
Neoplasias Ósseas/metabolismo , Dor Irruptiva/metabolismo , Dor do Câncer/metabolismo , Dor do Câncer/prevenção & controle , Glicoproteínas/metabolismo , Lectinas/metabolismo , Nociceptores/metabolismo , Animais , Neoplasias Ósseas/complicações , Dor Irruptiva/prevenção & controle , Dor do Câncer/etiologia , Feminino , Masculino , Movimento , Bloqueio Nervoso/métodos , Nociceptores/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Versicanas
5.
Mol Pain ; 14: 1744806918797042, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30152246

RESUMO

Bortezomib is a mainstay of therapy for multiple myeloma, frequently complicated by painful neuropathy. The objective of this study was to describe clinical, electrophysiological, and pathological changes of bortezomib-induced peripheral neuropathy (BiPN) in detail and to correlate pathological changes with pain descriptors. Clinical data, nerve conduction studies, and lower leg skin biopsies were collected from 22 BiPN patients. Skin sections were immunostained using anti-protein gene product 9.5 (PGP9.5) and calcitonin gene-related peptide (CGRP) antibodies. Cumulative bortezomib dose and clinical assessment scales indicated light-moderate sensory neuropathy. Pain intensity >4 (numerical rating scale) was present in 77% of the patients. Median pain intensity and overall McGill Pain Questionnaire (MPQ) sum scores indicated moderate to severe neuropathic pain. Sural nerve sensory nerve action potentials were abnormal in 86%, while intraepidermal nerve fiber densities of PGP9.5 and CGRP were not significantly different from healthy controls. However, subepidermal nerve fiber density (SENFD) of PGP9.5 was significantly decreased and the axonal swelling ratio, a predictor of neuropathy, and upper dermis nerve fiber density (UDNFD) of PGP9.5, presumably representing sprouting of parasympathetic fibers, were significantly increased in BiPN patients. Finally, significant correlations between UDNFD of PGP9.5 versus the evaluative Pain Rating Index (PRI) and number of words count (NWC) of the MPQ, and significant inverse correlations between SENFD/UDNFD of CGRP versus the sensory-discriminative MPQ PRI/NWC were found. BiPN is a sensory neuropathy, in which neuropathic pain is the most striking clinical finding. Bortezomib-induced neuropathic pain may be driven by sprouting of parasympathetic fibers in the upper dermis and impaired regeneration of CGRP fibers in the subepidermal layer.


Assuntos
Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Neuralgia/induzido quimicamente , Pele/inervação , Pele/fisiopatologia , Adulto , Idoso , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Condução Nervosa/efeitos dos fármacos , Estatísticas não Paramétricas , Ubiquitina Tiolesterase/metabolismo
6.
J Invest Dermatol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122143

RESUMO

Epidermal keratinocytes, immune cells, and sensory nerves all contribute to immune balance and skin homeostasis. Keratinocyte's release of GFs, neuromodulators, and immune activators is particularly important because each can evoke local (skin) and systemic (ie, immune and neural) responses that can initiate and exacerbate skin pathophysiology. From studies of skin and neural GFs, we hypothesized that neurturin (Nrtn), a member of the GDNF family that is expressed in the skin, has particular importance in this process. In this study, we examine how elevation of Nrtn in skin keratinocytes impacts early cytokine expression in response to complete Freund's adjuvant-mediated inflammation. Nrtn-overexpressing mice and wild-type mice injected with Nrtn exhibit an enhanced level of TNFα and IL-1ß cytokines in the skin, a response previously shown to support healing. In vitro assays suggest that one source of the Nrtn-induced TNFα increase is keratinocytes, which are shown to express Nrtn and mRNAs encoding the Nrtn receptors GFRα2, Ret, ITGB1, and NCAM. These findings support the contribution of keratinocyte-derived Nrtn as an autocrine/paracrine factor that acts as a first-line defense molecule that regulates the initial cytokine response to inflammatory challenge.

7.
Life Sci ; 332: 122120, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741322

RESUMO

AIMS: Nerve injury-induced mechanical hypersensitivity is one of major clinical symptoms in neuropathic pain patients. Understanding molecular mechanisms underlying this symptom is crucial for developing effective therapies. The present study was to investigate whether sensory neuron-specific long noncoding RNA (SS-lncRNA) predominantly expressed in small non-peptidergic dorsal root ganglion (DRG) neurons repaired nerve injury-induced mechanical hypersensitivity. MATERIALS AND METHODS: SS-lncRNA downregulation in the mas-related G protein-coupled receptor member D (Mrgprd)-expressed DRG neurons was rescued and mimicked by crossbreeding MrgprdCreERT2/+ lines with Rosa26SS-lncRNA knock-in mice and SS-lncRNAfl/fl mice, respectively, followed by tamoxifen injection. KEY FINDINGS: Rescuing SS-lncRNA downregulation in the Mrgprd-expressed DRG neurons significantly reversed the spinal nerve ligation (SNL)-induced reduction of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in these DRG neurons and alleviated the SNL-induced mechanical hypersensitivity, without affecting the SNL-induced heat and cold nociceptive hypersensitivities, on the ipsilateral side. Conversely, mimicking SS-lncRNA downregulation in the Mrgprd-expressed DRG neurons reduced basal KCNN1 expression in these DRG neurons and produced the enhanced response to mechanical stimulation, but not thermal and cold stimuli, on bilateral sides. Mechanistically, SS-lncRNA downregulation caused a reduction in its binding to lysine-specific demethylase 6B (KDM6B) and consequent recruitment of less KDM6B to Kcnn1 promoter and an increase of H3K27me3 enrichment in this promoter in injured DRG. SIGNIFICANCE: Our findings suggest that SS-lncRNA downregulation in small non-peptidergic sensory neurons is required specifically for nerve injury-induced mechanical hypersensitivity likely through silencing KCNN1 expression caused by KDM6B-gated increase of H3K27me3 enrichment in Kcnn1 promoter in these neurons.


Assuntos
RNA Longo não Codificante , Ratos , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Histonas/metabolismo , Células Receptoras Sensoriais/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
8.
Brain Res ; 1730: 146621, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926911

RESUMO

Consistent associations between the severity of neuropathic pain and cutaneous innervation have not been described. We collected demographic and clinical data, McGill Pain Questionnaires (MPQ) and skin biopsies processed for PGP9.5 and CGRP immunohistochemistry from patients with bortezomib-induced peripheral neuropathy (BiPN; n = 22), painful diabetic neuropathy (PDN; n = 16), chronic idiopathic axonal polyneuropathy (CIAP; n = 16) and 17 age-matched healthy volunteers. Duration of neuropathic symptoms was significantly shorter in patients with BiPN in comparison with PDN and CIAP patients. BiPN was characterized by a significant increase in epidermal axonal swellings and upper dermis nerve fiber densities (UDNFD) and a decrease in subepidermal nerve fiber densities (SENFD) of PGP9.5-positive fibers and of PGP9.5 containing structures that did not show CGRP labeling, presumably non-peptidergic fibers. In PDN and CIAP patients, intraepidermal nerve fiber densities (IENFD) and SENFD of PGP9.5-positive and of non-peptidergic fibers were decreased in comparison with healthy volunteers. Significant unadjusted associations between IENFD and SENFD of CGRP-positive, i.e. peptidergic, fibers and the MPQ sensory-discriminative, as well as between UDNFD of PGP9.5-positive fibers and the MPQ evaluative/affective component of neuropathic pain, were found in BiPN and CIAP patients. No significant associations were found in PDN patients. Cutaneous innervation changes in BiPN confirm characteristic features of early, whereas those in CIAP and PDN are in line with late forms of neuropathic pathology. Our results allude to a distinct role for non-peptidergic nociceptors in BiPN and CIAP patients. The lack of significant associations in PDN may be caused by mixed ischemic and purely neuropathic pain pathology.


Assuntos
Bortezomib/efeitos adversos , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/complicações , Neuralgia/patologia , Polineuropatias/induzido quimicamente , Polineuropatias/complicações , Pele/inervação , Pele/patologia , Adulto , Idoso , Doença Crônica , Neuropatias Diabéticas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Neuralgia/etiologia , Medição da Dor , Percepção da Dor , Polineuropatias/patologia
9.
Neurosci Lett ; 736: 135267, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32717335

RESUMO

Nociceptive stimuli attributes are codified in the periphery; at this level, D2-like dopamine (DA) receptor activation decreases the high voltage-gated Ca2+ current predominantly in mechanonociceptive neurons, which explains the presynaptic action mechanism of the antinociception produced by quinpirole when it is intrathecally administered in rats. However, the identity of D2-like DA receptor subtype that mediates this effect remains unknown. To answer this question, we used Fluo-4-based Ca2+ microfluorometry to study the depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons (identified by its binding to the Isolectin B4), and to test the effect of D2-like DA receptor activation by quinpirole in presence of selective antagonists for D2, D3, and D4 DA receptors. The results showed a significantly greater contribution of the D4 DA receptor in the down-modulation of depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons compared to the other receptors. Although the D2 and D3 receptor antagonists also slightly inhibited the effect of quinpirole, their effects were significantly weaker than those of the D4 receptor antagonist. Furthermore, we showed that quinpirole selectively inhibits the CaV2.2 Ca2+ channels. Our results suggest that the activation of the D4 DA receptors is a promising strategy for pain management at the spinal cord level.


Assuntos
Canais de Cálcio Tipo N/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Neurônios/metabolismo , Quimpirol/farmacologia , Receptores de Dopamina D4/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/metabolismo , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
10.
J Comp Neurol ; 528(11): 1903-1916, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31970770

RESUMO

While sensory and sympathetic neurons are known to innervate bone, previous studies have found it difficult to unequivocally identify and characterize only those that are of sensory origin. In this study, we have utilized an in vivo anterograde tracing technique to selectively label spinal afferent (sensory) nerve endings that innervate the periosteum and marrow cavity of murine long bones. Unilateral injections of dextran-biotin (anterograde tracer; 20% in saline, 50-100 nl) were made into L3-L5 dorsal root ganglia. After a 10-day recovery period to allow sufficient time for selective anterograde transport of the tracer to nerve terminal endings in bone, the periosteum (whole-mount) and underlying bone were collected, processed to reveal anterograde labeling, and immuno-labeled with antibodies directed against protein gene product (pan-neuronal marker; PGP9.5), tyrosine hydroxylase (sympathetic neuron marker; TH), calcitonin gene-related protein (peptidergic nociceptor marker; CGRP), and/or neurofilament 200 (myelinated axon marker; NF200). Anterograde-labeled nerve endings were dispersed throughout the periosteum and marrow cavity and could be identified in close apposition to blood vessels and at sites distant from them. The periosteum and the marrow cavity were each innervated by myelinated (NF200+) sensory neurons, and unmyelinated (NF200-) sensory neurons that were either peptidergic (CGRP+) or nonpeptidergic (CGRP-). Spinal afferent nerve endings did not express TH, and lacked the cylindrical morphology around blood vessels characteristic of sympathetic innervation. This approach to selective labeling of sensory nerve terminal endings will help to better identify how different sub-populations of sensory neurons, and their peripheral nerve terminal endings, interact with bone.


Assuntos
Medula Óssea/inervação , Periósteo/inervação , Células Receptoras Sensoriais/citologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Mol Neurobiol ; 56(8): 5715-5728, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30674034

RESUMO

Small nerve fibers that bind the isolectin B4 (IB4+ C-fibers) are a subpopulation of primary afferent neurons that are involved in nociceptive sensory transduction and do not express the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Several studies have attempted to elucidate the functional role of IB4+-nociceptors in different models of pain. However, a functional characterization of the non-peptidergic nociceptors in mediating mechanical inflammatory hypersensitivity in mice is still lacking. To this end, in the present study, the neurotoxin IB4-Saporin (IB4-Sap) was employed to ablate non-peptidergic C-fibers. Firstly, we showed that intrathecal (i.t.) administration of IB4-Sap in mice depleted non-peptidergic C-fibers, since it decreased the expression of purinoceptor 3 (P2X3) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the dorsal root ganglia (DRGs) as well as IB4 labelling in the spinal cord. Non-peptidergic C-fibers depletion did not alter the mechanical nociceptive threshold, but it inhibited the mechanical inflammatory hypersensitivity induced by glial cell-derived neurotrophic factor (GDNF), but not nerve growth factor (NGF). Depletion of non-peptidergic C-fibers abrogated mechanical inflammatory hypersensitivity induced by carrageenan. Finally, it was found that the inflammatory mediators PGE2 and epinephrine produced a mechanical inflammatory hypersensitivity that was also blocked by depletion of non-peptidergic C-fibers. These data suggest that IB4-positive nociceptive nerve fibers are not involved in normal mechanical nociception but are sensitised by inflammatory stimuli and play a crucial role in mediating mechanical inflammatory hypersensitivity.


Assuntos
Hipersensibilidade/patologia , Inflamação/patologia , Nociceptores/patologia , Peptídeos/metabolismo , Animais , Dinoprostona/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Hipersensibilidade/complicações , Hipersensibilidade/fisiopatologia , Inflamação/complicações , Inflamação/fisiopatologia , Lectinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Dor/complicações , Dor/fisiopatologia , Saporinas/farmacologia
12.
Cell Rep ; 21(3): 707-720, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045838

RESUMO

Producing the neuronal diversity required to adequately discriminate all elements of somatosensation is a complex task during organogenesis. The mechanisms guiding this process during dorsal root ganglion (DRG) sensory neuron specification remain poorly understood. Here, we show that the p75 neurotrophin receptor interacts with Ret and its GFRα co-receptor upon stimulation with glial cell line-derived neurotrophic factor (GDNF). Furthermore, we demonstrate that p75 is required for GDNF-mediated Ret activation, survival, and cell surface localization of Ret in DRG neurons. In mice in which p75 is deleted specifically within sensory neurons beginning at E12.5, we observe that approximately 20% of neurons are lost between P14 and adulthood, and these losses selectively occur within a subpopulation of Ret+ nonpeptidergic nociceptors, with neurons expressing low levels of Ret impacted most heavily. These results suggest that p75 is required for the development of the nonpeptidergic nociceptor lineage by fine-tuning Ret-mediated trophic support.


Assuntos
Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Integrases/metabolismo , Ligantes , Camundongos , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Peptídeos/metabolismo
13.
Exp Neurol ; 267: 87-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25749190

RESUMO

Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Epiderme/patologia , Lateralidade Funcional/fisiologia , Fibras Nervosas/fisiologia , Recuperação de Função Fisiológica/fisiologia , Ciática/fisiopatologia , Pele/inervação , Análise de Variância , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Hiperalgesia/etiologia , Fator de Crescimento Neural/uso terapêutico , Medição da Dor , Limiar da Dor/fisiologia , Peptídeos , Ratos , Receptores Purinérgicos P2X3/metabolismo , Fatores de Tempo
14.
J Neurosurg ; 123(1): 254-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25723305

RESUMO

OBJECT: Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional deficits. The current gold standard for transected nerves is an end-to-end reconstruction, which results in the intermittent appearance of neuropathic pain. METHODS: To improve our understanding of the relation between this type of reconstruction and neuropathic pain, the authors transected and immediately end-to-end reconstructed the sciatic nerve in rats. The effect of this procedure on neuropathic pain, as measured by thermal and mechanical hypersensitivity at 4 different time points (5, 10, 20, and 30 weeks), was related to the density of peptidergic and nonpeptidergic fiber innervation in the glabrous skin of rats' hind paws. RESULTS: Thermal hypersensitivity occurring 20 weeks after reconstruction was accompanied by a significant increase in peptidergic epidermal fibers. However, the lesion-induced reduction in the density of nonpeptidergic epidermal fibers remained decreased at all experimental time points. Moreover, temporal collateral sprouting by undamaged saphenous nerve was visualized using the recently revised Evans blue extravasation technique. Strikingly, as the sciatic nerve repopulated rats' hind paw, the saphenous nerve withdrew to its original territory. CONCLUSIONS: The authors conclude that the transient thermal hypersensitivity is related to increased density of epidermal peptidergic fibers, which mainly originate from regenerating fibers. Furthermore, a changed composition in the peptidergic and nonpeptidergic epidermal fibers is demonstrated following end-to-end reconstruction of the sciatic nerve.


Assuntos
Epiderme/inervação , Fibras Nervosas/classificação , Fibras Nervosas/fisiologia , Regeneração Nervosa/fisiologia , Nervo Isquiático/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Seguimentos , Estudos Longitudinais , Neuralgia/cirurgia , Traumatismos dos Nervos Periféricos/cirurgia , Ratos , Ratos Endogâmicos Lew , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA