Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Int Microbiol ; 27(1): 179-202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37258658

RESUMO

Beneficial and pathogenic microbes coexist in the vaginal canal, where a diminishing population of lactic acid bacteria may cause recurring urogenital infections. Probiotic bacteria Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus vaginalis, and pathogenic microbes Enterococcus faecalis, Enterobacter cloacae, Shigella sp., Staphylococcus epidermidis, and Escherichia fergusonii were isolated from vaginal swabs. Lactobacillus sp. and their probiotic culture free supernatant (PCFS) inhibited the growth of the above-mentioned urogenital pathogens. L. crispatus produced both lactic acid and hydrogen peroxide, exhibiting the best antimicrobial potential against the studied pathogens. Lyophilized L. crispatus had a shelf life of 12 months and the lyophilized PCFS also retained its antibacterial property with a minimum inhibition concentration of 1 µg/µL. Carboxy-methyl cellulose-alginate, a green alternative to super-absorbent polymers, was encapsulated with L. crispatus cells. The probiotic in its encapsulated state retained its viability for 21 days, and the bead showed 30% solvent absorptive capacity. PCFS-laced non-woven fabric displayed antibacterial property with no change in its physicochemical properties. These probiotic and postbiotic formulations have excellent prophylactic potential for urogenital infections. Such formulations can be exploited as additives in sanitary suppositories to enhance vaginal health.


Assuntos
Lactobacillales , Probióticos , Infecções Urinárias , Feminino , Humanos , Supositórios , Vagina/microbiologia , Bactérias , Antibacterianos , Probióticos/farmacologia
2.
Environ Sci Technol ; 58(17): 7335-7345, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626301

RESUMO

Interfacial solar vapor generation (ISVG) is an emerging technology to alleviate the global freshwater crisis. However, high-cost, low freshwater collection rate, and salt-blockage issues significantly hinder the practical application of solar-driven desalination devices based on ISVG. Herein, with a low-cost copper plate (CP), nonwoven fabric (NWF), and insulating ethylene-vinyl acetate foam (EVA foam), a multistage device is elaborately fabricated for highly efficient simultaneous freshwater and salt collection. In the designed solar-driven device, a superhydrophobic copper plate (SH-CP) serves as the condensation layer, facilitating rapid mass and heat transfer through dropwise condensation. Moreover, the hydrophilic NWF is designed with rational hydrophobic zones and specific high-salinity solution outlets (Design-NWF) to act as the water evaporation layer and facilitate directional salt collection. As a result, the multistage evaporator with eight stages exhibits a high water collection rate of 2.25 kg m-2 h-1 under 1 sun irradiation. In addition, the desalination device based on the eight-stage evaporator obtains a water collection rate of 13.44 kg m-2 and a salt collection rate of 1.77 kg m-2 per day under natural irradiation. More importantly, it can maintain a steady production for 15 days without obvious performance decay. This bifunctional multistage device provides a feasible and efficient approach for simultaneous desalination and solute collection.


Assuntos
Água Doce , Luz Solar , Salinidade , Purificação da Água
3.
Luminescence ; 39(9): e4903, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39268692

RESUMO

Smart photochromic and fluorescent textile refers to garments that alter their colorimetric properties in response to external light stimulus. Cotton fibers have been reported as a main resource for many textile and non-textile industries, such as automobiles, medical devices, and furniture applications. Cotton is a natural fiber that is distinguished with breathability, softness, cheapness, and highly absorbent. However, there have been growing demands to find other resources for cotton textiles at high quality and low cost for various applications, such as sensor for harmful ultraviolet radiation. Herein, we present a novel method toward luminescent and photochromic nonwoven textiles from recycled cotton waste. Using the screen-printing technology, a cotton fabric that is both photochromic and fluorescent was developed using aqueous inorganic phosphor nanoparticles (10-18 nm)-containing printing paste. Both CIE Lab color coordinates and photoluminescence spectra showed that the transparent film printed on the nonwoven fabric develops a reversible green emission (519 nm) under ultraviolet light (365 nm), even at low pigment concentration (2%) in the printing paste. Colorfastness of printed fabrics showed high durability and photostability.


Assuntos
Celulose , Fibra de Algodão , Estrôncio , Fibra de Algodão/análise , Celulose/química , Estrôncio/química , Têxteis , Raios Ultravioleta , Dispositivos Eletrônicos Vestíveis , Luminescência , Óxido de Alumínio/química , Impressão , Processos Fotoquímicos , Reciclagem
4.
Int J Phytoremediation ; 26(9): 1420-1428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563437

RESUMO

A proton exchange membrane increases the electrical performance of a microbial fuel cell (MFC). New inexpensive materials should be sought, especially in a constructed wetland microbial fuel cell (CW-MFC). Here, in a laboratory-scale system of five CW-MFCs, wet clay, wet earth or mud, and non-woven cloth were used as inexpensive separators with long-term stability. The five CW-MFCs were planted with Typha latifolia, fed with synthetic wastewater, and packed with natural porous material. Graphite felt was used as electrodes and the experimental system had a hydraulic residence time of 3 days, operating under shade and natural conditions of temperature and light. Electrodes were connected to current collectors (copper wire) and to an external resistance, with a change every 20 days, starting in open-circuit and following with 20000, 18000, 15000, 10000, 5600, 1000, 560, and 10 Ω. These laboratory-scale CW-MFCs reduced concentrations of nitrates, ammonium ion, and sulfates without inhibiting electricity production. Microbiological analyses indicated that anaerobic, facultative, aerobic, and denitrifying bacteria may have caused these reductions. The reactor with the live plant and with the wet earth or mud separator achieved the highest production of electricity (22.6 mW/m2), and may be worth further attention.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica , Eletrodos , Typhaceae , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Técnicas Eletroquímicas
5.
Sci Technol Adv Mater ; 25(1): 2311052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361530

RESUMO

Polymer fabrics are versatile materials used in various fields. Surface modification methods for hydrophobic polymer fibers have been developed to endow the materials with water wettability and functionality. Nevertheless, it remains a challenge to freely introduce functional groups to polymer fiber surfaces in a simple manner. Herein, we report the decoration of nonwoven fabric surfaces with azidated cello-oligosaccharide assemblies via molecular self-assembly. Cello-oligosaccharides with a terminal azido group were enzymatically synthesized and allowed to self-assemble in polyolefin, polyester, and vinylon nonwoven fabrics. It was found that the functional oligosaccharides formed bark-like assemblies on the nonwoven fiber surfaces, probably through heterogeneous nucleation. The hydrophilic oligosaccharide assemblies made the hydrophobic nonwoven surfaces water-wettable. Moreover, the azido group at oligosaccharide terminal was available for the post-functionalization of the modified nonwovens. In fact, an antigen was successfully conjugated to the modified nonwovens via the click chemistry. The antigen-conjugated nonwovens were useful for the specific and quantitative detection of a corresponding antibody. Our findings demonstrate the great potential of cello-oligosaccharide assembly for the functionalization of fabrics and other polymeric materials.


This study developed a novel and simple method for modifying surfaces of polymer nonwoven fabrics based on the self-assembly of azidated cello-oligosaccharides to fabricate water-wettable and click-reactive functional materials.

6.
J Environ Manage ; 363: 121363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850911

RESUMO

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Assuntos
Acústica , Sapatos , Resistência à Tração , Poliésteres/química , Reciclagem
7.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930981

RESUMO

ZnO nanorod nonwoven fabrics (ZNRN) were developed through hydrothermal synthesis to facilitate the prevention of the transmission of respiratory pathogens. The superhydrophobicity and antibacterial properties of ZNRN were improved through the response surface methodology. The synthesized material exhibited significant water repellency, indicated by a water contact angle of 163.9°, and thus demonstrated antibacterial rates of 91.8% for Escherichia coli (E. coli) and 79.75% for Staphylococcus aureus (S. aureus). This indicated that E. coli with thinner peptidoglycan may be more easily killed than S. aureus. This study identified significant effects of synthesis conditions on the antibacterial effectiveness, with comprehensive multivariate analyses elucidating the underlying correlations. In addition, the ZnO nanorod structure of ZNRN was characterized through SEM and XRD analyses. It endows the properties of superhydrophobicity (thus preventing bacteria from adhering to the ZNRN surface) and antibacterial capacity (thus damaging cells through the puncturing of these nanorods). Consequently, the alignment of two such features is desired to help support the development of personal protective equipment, which assists in avoiding the spread of respiratory infections.


Assuntos
Antibacterianos , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Nanotubos , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Têxteis/microbiologia , Testes de Sensibilidade Microbiana , Propriedades de Superfície
8.
J Occup Environ Hyg ; 21(4): 239-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437682

RESUMO

The COVID-19 pandemic created an unprecedented increase in the usage of personal protective equipment (PPE) in the healthcare industry, especially in the form of face coverings. Subsequently, guidelines related to breathability and wear comfort were published by the Centers for Disease Control (CDC) as an influx of various new materials entered the PPE market. This study evaluated a proprietary, novel, zinc-ion embedded fiber with the ability to deactivate bacteria and viruses, including SARS-COV-2, for its wear comfort in a nonwoven disposable mask in comparison to a commercially available surgical face mask which served as the control. Ten healthy, full-time, career, firefighters participated in this study wearing both masks in a randomized fashion. A medical task simulation (MTS) protocol was developed to replicate nursing task metabolic rates, per the compendium of physical activities, via a graded treadmill walking exercise. Participant ratings including ease of mask fit, overall mask comfort, facial comfort, breathability, and facial temperature sensation were recorded before, during, and after the 50-minute protocol in a controlled environmental chamber. The 100% nylon, zinc ion mask was rated as slightly cooler at the beginning of the trial (at 0.8 vs. 1.3), than the commercially available polypropylene mask. The polypropylene mask also reached a perceived mask facial comfort (MFC) rating of 1.6 just 35 min into the protocol whereas the zinc ion mask did not reach a rating of slight discomfort until the end of the exercise. Findings indicate the novel zinc-ion embedded mask was as comfortable, if not more so, than the commercially available nonwoven mask with more favorable ratings for longer durations. Not only do the zinc properties provide enhanced protection, but they maintain, if not improve, wearer comfort.


Assuntos
Anti-Infecciosos , COVID-19 , Dispositivos de Proteção Respiratória , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Zinco , Polipropilenos , Atenção à Saúde
9.
Biotechnol Bioeng ; 120(7): 1961-1974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204009

RESUMO

The realization that soluble factors secreted by heterotypic cells play an importanta role in paracrine signaling, which facilitates intercellular communication, enabled the development of physiologically relevant co-culture models for drug screening and the engineering of tissues, such as hepatic tissues. The most crucial issues confronting the use of conventional membrane inserts in segregated co-culture models that are used to study paracrine signaling between heterotypic cells have been identified as long-term viability and retention of cell-specific functions, especially when isolated primary cells are used. Herein, we present an in vitro segregated co-culture model consisting of a well plate incubated with rat primary hepatocytes and normal human dermal fibroblasts which were segregated using a membrane insert with silica nonwoven fabric (SNF) on it. SNF, which mimics a physiological environment much more effectively than a two-dimensional (2D) one, promotes cell differentiation and resultant paracrine signaling in a manner that is not possible in a conventional 2D culture, owing to high mechanical strength generated by its inorganic materials and interconnected network structure. In segregated co-cultures, SNF clearly enhanced the functions of hepatocytes and fibroblasts, thereby showing its potential as a measure of paracrine signaling. These results may advance the understanding of the role played by paracrine signaling in cell-to-cell communication and provide novel insights into the applications of drug metabolism, tissue repair, and regeneration.


Assuntos
Hepatócitos , Comunicação Parácrina , Ratos , Humanos , Animais , Técnicas de Cocultura , Células Cultivadas , Comunicação Celular , Fibroblastos
10.
Prev Med ; 173: 107597, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385411

RESUMO

The use of disinfection materials and instruments is an important part of surgical operation. Hospital environment and surgical equipment need comprehensive sterilization treatment. This process is the key to the success of the operation, and it is also one of the first ways to control the hospital to avoid infection during the operation. The selection of scientific and reasonable sterilization methods for infection will directly affect the safety of medical treatment. In order to improve the antibacterial properties of medical non-woven fabrics, this paper combines two antibacterial methods of sterilization and antibacterial adhesion, and uses the principle of nanotechnology to design that the non-woven fabrics have good blood compatibility in the sterilization process. Then, a new composite antibacterial nanoparticle antibacterial solution is prepared from the synthesized nano­silver solution, and the antibacterial solution is attached to the non-woven fabric, so that the nano­silver particles with antibacterial effect are fixed on the surface of the fabric, and its antibacterial effect is measured through the antibacterial test, and excellent hospital infection sterilization technology is prepared and applied to the non-woven fabric products. The fusion experiment of platelets and red blood cells shows that the prepared surface technology combined with antibacterial adhesion and sterilization can effectively fuse with platelets and red blood cells, and can also effectively prevent the adhesion of platelets and red blood cells, and shows good blood compatibility, which is applicable to the sterilization process of hospital infection.


Assuntos
Antibacterianos , Nanopartículas , Humanos , Antibacterianos/farmacologia , Têxteis , Esterilização
11.
Biol Pharm Bull ; 46(9): 1231-1239, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357386

RESUMO

Personal protective equipment (PPE), including medical masks, should be worn for preventing the transmission of respiratory pathogens via infective droplets and aerosols. In medical masks, the key layer is the filter layer, and the melt-blown nonwoven fabric (NWF) is the most used fabric. However, the NWF filter layer cannot kill or inactivate the pathogens spread via droplets and aerosols. Povidone-iodine (PVP-I) has been used as an antiseptic solution given its potent broad-spectrum activity against pathogens. To develop PPE (e.g., medical masks) with anti-pathogenic activity, we integrated PVP-I into nylon-66 NWF. We then evaluated its antiviral activity against influenza A viruses by examining the viability of Madin-Darby canine kidney (MDCK) cells after inoculation with the virus strains exposed to the PVP-I-integrated nylon-66 NWF. The PVP-I nylon-66 NWF protected the MDCK cells from viral infection in a PVP-I concentration-dependent manner. Subsequently, we found to integrate PVP-I into nylon-66 and polyurethane materials among various materials. These PVP-I materials were also effective against influenza virus infection, and treatment with PVP-I nylon-66 NWF showed the highest cell survival among all the tested materials. PVP-I showed anti-influenza A virus activity when used in conjunction with PPE materials. Moreover, nylon-66 NWF integrated with PVP-I was found to be the best material to ensure anti-influenza activity. Therefore, PVP-I-integrated masks could have the potential to inhibit respiratory virus infection. Our results provide new information for developing multi-functional PPEs with anti-viral activity by integrating them with PVP-I to prevent the potential transmission of respiratory viruses.


Assuntos
Influenza Humana , Orthomyxoviridae , Animais , Cães , Humanos , Povidona-Iodo/farmacologia , Povidona-Iodo/uso terapêutico , Nylons , Aerossóis e Gotículas Respiratórios , Influenza Humana/prevenção & controle
12.
Chem Eng J ; 464: 142588, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992868

RESUMO

The worldwide spread of COVID-19 has put a higher requirement for personal medical protective clothing, developing protective clothing with sustained antibacterial and antiviral performance is the priority for safe and sustaining application. For this purpose, we develop a novel cellulose based material with sustained antibacterial and antiviral properties. In the proposed method, the chitosan oligosaccharide (COS) was subjected to a guanylation reaction with dicyandiamide in the presence of Scandium (III) triflate; because of the relatively lower molecular weight and water solubility of the COS, GCOS (guanylated chitosan oligosaccharide) with high substitution degree (DS) could be successfully synthetized without acid application. In this instance, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the GCOS were only 1/8 and 1/4 of that of COS. The introduction of GCOS onto the fiber endowed the fiber with extremely high antibacterial and antiviral performance, showing 100% bacteriostatic rate against Staphylococcus aureus and Escherichia coli and 99.48% virus load reduction of bacteriophage MS2. More importantly, the GCOS modified cellulosic fibers (GCOS-CFs) exhibit excellent sustained antibacterial and antiviral properties; namely, 30 washing cycles had negligible effect on the bacteriostatic rate (100%) and inhibition rate of bacteriophage MS2 (99.0%). Moreover, the paper prepared from the GCOS-CFs still exhibited prominent antibacterial and antiviral activity; inferring that the sheeting forming, press, and drying process have almost no effect on the antibacterial and antiviral performances. The insensitive of antibacterial and antiviral activity to water washing (spunlace) and heat (drying) make the GCOS-CFs a potential material applicable in the spunlaced non-woven fabric production.

13.
Luminescence ; 38(3): 350-359, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36775810

RESUMO

Recently, various studies have focused on the development of multifunctional non-woven polyethylene terephthalate (PT; polyester) textiles. Herein, we introduce multifunctional non-woven polyester fabrics by pad dry curing silver nitrate (AgNO3 ) and aniline monomer into plasma-pretreated non-woven PT textile. This creates a nanocomposite layer of silver nanoparticles (AgNPs) and polyaniline (PANi) on the fabric surface. In order to prepare a non-woven fibrous mat, we applied the melt-spinning technique on previously shredded recycled PT plastic waste. On the surface of the cloth, PANi was synthesized by REDOX polymerization of aniline. Due to the oxidative polymerization, the silver ions (Ag+ ) were converted to Ag0 NPs. PANi acted as a conductor while AgNPs inhibited the growth of microorganisms. Microwave-assisted curing with trimethoxyhexadecylsilane (TMHDS) gave PT textiles with superhydrophobic properties. The morphological studies were performed using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The stiffness and breathability of finished non-woven PT textile materials were analyzed to establish their comfort levels. Both of Escherichia coli and Staphylococcus aureus were used to test the efficacy of the AgNPs-treated textiles as antimicrobial materials. Moreover, the processed polyester textiles showed excellent electrical conductivity and great ultraviolet-ray blocking.


Assuntos
Nanopartículas Metálicas , Polietilenotereftalatos , Nanopartículas Metálicas/química , Prata , Têxteis , Compostos de Anilina , Antibacterianos/química
14.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765805

RESUMO

In this paper, an inductive wireless link for motion recognition is investigated. In order to validate the feasibility of a wearable implementation, the use of three different materials is analyzed: a thin copper wire, a conductive yarn, and a conductive non-woven fabric. Results from the application of the developed devices on an arm are reported and discussed. It is demonstrated that the proposed textile inductive resonant wireless links are well suited for developing a compact wearable system for joint flexion recognition.

15.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834199

RESUMO

Recently, nonwoven fabrics from natural silk have attracted considerable attention for biomedical and cosmetic applications because of their good mechanical properties and cytocompatibility. Although these fabrics can be easily fabricated using the binding character of sericin, the high cost of silk material may restrict its industrial use in certain areas. In this study, sericin was added as a binder to a cheaper material (wool) to prepare wool-based nonwoven fabrics and investigate the effect of the amount of sericin added on the structural characteristics and properties of the wool nonwoven fabric. It was found using SEM that sericin coated the surface of wool fibers and filled the space between them. With an increase in sericin addition, the porosity, moisture regain, and the contact angle of the sericin-coated wool nonwoven fabric decreased. The maximum stress and initial Young's modulus of the nonwoven fabric increased with the increase in sericin amount up to 32.5%, and decreased with a further increase in the amount of sericin. Elongation at the end steadily decreased with the increase in sericin addition. All of the nonwoven fabrics showed good cytocompatibility, which increased with the amount of sericin added. These results indicate that sericin-coated wool-based nonwoven fabrics may be successfully prepared by adding sericin to wool fibers, and that the properties of these fabrics may be diversely controlled by altering the amount of sericin added, making them promising candidates for biomedical and cosmetic applications.


Assuntos
Sericinas , Animais , Sericinas/química , Fibra de Lã , , Têxteis , Seda/química
16.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511244

RESUMO

In this study, five different nonwoven silk fabrics were fabricated with silk fibers from different cocoon layers, and the effect of the cocoon layer on the structural characteristics and properties of the nonwoven silk fabric was examined. The diameter of the silk fiber and thickness of the nonwoven silk fabric decreased from the outer to the inner cocoon layer. More amino acids with higher hydrophilicity (serine, aspartic acid, and glutamic acid) and lower hydrophilicity (glycine and alanine) were observed in the outer layers. From the outer to the inner layer, the overall crystallinity and contact angle of the nonwoven silk fabric increased, whereas its yellowness index, moisture retention, and mechanical properties decreased. Regardless of the cocoon layer at which the fiber was sourced, the thermal stability of fibroin and sericin and good cell viability remained unchanged. The results of this study indicate that the properties of nonwoven silk fabric can be controlled by choosing silk fibers from the appropriate cocoon layers. Moreover, the findings in this study will increase the applicability of nonwoven silk fabric in the biomedical and cosmetic fields, which require specific properties for industrialization.


Assuntos
Bombyx , Fibroínas , Sericinas , Animais , Seda/química , Têxteis , Fibroínas/química , Sericinas/química , Sobrevivência Celular , Bombyx/química
17.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175689

RESUMO

Developing biodegradable materials based on polymer blends with a programmable self-destruction period in the environmental conditions of living systems is a promising direction in polymer chemistry. In this work, novel non-woven fibrous materials obtained by electrospinning based on the blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) were developed. The kinetics of biodegradation was studied in the aquatic environment of the inoculum of soil microorganisms. Oxidative degradation was studied under the ozone gaseous medium. The changes in chemical composition and structure of the materials were studied by optical microscopy, DSC, TGA, and FTIR-spectroscopy. The disappearance of the structural bands of PHB in the IR-spectra of the blends and a significant decrease in the enthalpy of melting after 90 days of exposure in the inoculum indicated the biodegradation of PHB while PLA remained stable. It was shown that the rate of ozonation was higher for PLA and the blends with a high content of PLA. The lower density of the amorphous regions of the blends determined an increased rate of their oxidation by ozone compared to homopolymers. The optimal composition in terms of degradation kinetics is a fibrous material based on the blend of 30PLA/70PHB that can be used as an effective ecosorbent, for biopackaging, and as a highly porous covering material for agricultural purposes.


Assuntos
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Poliésteres/química , Polímeros/química , Estresse Oxidativo
18.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203673

RESUMO

Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.


Assuntos
Anti-Infecciosos , Proantocianidinas , Humanos , Poliésteres , Bolsa Periodontal , Ácido 3-Hidroxibutírico , Sistemas de Liberação de Medicamentos , Anti-Infecciosos/farmacologia , Hidroxibutiratos , Poli A , Água
19.
Molecules ; 28(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513318

RESUMO

Antibacterial nonwoven fabrics, incorporated with Ag, have been applied as masks and air conditioner filters to prevent the spread of disease from airborne respiratory pathogens. In this work, we present a comparison study of Ag ions: Ag and AgCu nanoparticles (NPs) coated onto nonwoven fabrics intended for use as air conditioner antibacterial filters. We illustrate their color changes and durability running in air conditioners using antibacterial activity testing and X-ray Photoelectron Spectroscopic (XPS) analysis. We found that AgCu NPs showed the best antibacterial efficacy and durability. XPS analysis indicated that the Ag concentration, on both the AgCu and Ag- NP-coated fibers, changed little. On the contrary, the Ag concentration on Ag ion-coated fibers decreased by ~30%, and the coated NPs aggregated over time. The color change in AgCu NP-coated fabric, from yellow to white, is caused by oxide shell formation over the NPs, with nearly 46% oxidized silver. Our results, both from antibacterial evaluation and wind blowing tests, indicate that AgCu NP-coated fibers have higher durability, while Ag ion-coated fibers have little durability in such applications. The enhanced durability of the AgCu NP-coated antibacterial fabrics can be attributed to stronger NP-fiber interactions and greater ion release.


Assuntos
Filtros de Ar , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Prata/farmacologia , Prata/química , Têxteis
20.
Prep Biochem Biotechnol ; : 1-9, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010621

RESUMO

Membrane photobioreactors (MPBRs) have gained significant attention due to their ability to support microalgae activities such as cultivation, harvesting, and production of beneficial products. Despite various efforts to mitigate membrane fouling, a fundamental issue in membrane processes, in these systems, a cost-effective and less energy-consuming method is still needed. This study examines the impact of the cross-sectional area of the riser and the baffle material on membrane fouling in an internal loop airlift MPBR. The use of hydrophilic polyester-polypropylene (PES-PP) baffles proves to be more effective than plexiglass baffles. Specifically, in configurations with d = 0.7 cm and d = 1.4 cm, RC/RT decreased by approximately 20% and 13%, respectively, compared to plexiglass baffles. As for the values of RP/RT at a distance of d = 0.7, nearly a 5% increase was observed, and at a distance of d = 1.4, an increase of approximately 11% was observed. This is due to the development of the cake layer on the matrix structure of the PES-PP baffles instead of the membrane itself. The most optimal outcomes were reached while working with PES-PP at a distance of 0.7 cm, as it prolonged the membrane fouling time to 46 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA