Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 183(5): 1325-1339.e21, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33080218

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.


Assuntos
COVID-19/metabolismo , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Splicing de RNA , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Animais , COVID-19/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Interferons/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/metabolismo , Células Vero , Proteínas não Estruturais Virais/química
2.
J Virol ; 97(2): e0153222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36722972

RESUMO

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'-O-methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process. Based on observations with other CoVs, we hypothesized that NSP16 2'-O-MTase function protects SARS-CoV-2 from cap-sensing host restriction. Therefore, we engineered SARS-CoV-2 with a mutation that disrupts a conserved residue in the active site of NSP16. We subsequently show that this mutant is attenuated both in vitro and in vivo, using a hamster model of SARS-CoV-2 infection. Mechanistically, we confirm that the NSP16 mutant is more sensitive than wild-type SARS-CoV-2 to type I interferon (IFN-I) in vitro. Furthermore, silencing IFIT1 or IFIT3, IFN-stimulated genes that sense a lack of 2'-O-methylation, partially restores fitness to the NSP16 mutant. Finally, we demonstrate that sinefungin, an MTase inhibitor that binds the catalytic site of NSP16, sensitizes wild-type SARS-CoV-2 to IFN-I treatment and attenuates viral replication. Overall, our findings highlight the importance of SARS-CoV-2 NSP16 in evading host innate immunity and suggest a target for future antiviral therapies. IMPORTANCE Similar to other coronaviruses, disruption of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP16 function attenuates viral replication in a type I interferon-dependent manner. In vivo, our results show reduced disease and viral replication at late times in the hamster lung, but an earlier titer deficit for the NSP16 mutant (dNSP16) in the upper airway. In addition, our results confirm a role for IFIT1 but also demonstrate the necessity of IFIT3 in mediating dNSP16 attenuation. Finally, we show that targeting NSP16 activity with a 2'-O-methyltransferase inhibitor in combination with type I interferon offers a novel avenue for antiviral development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , COVID-19/virologia , Interferon Tipo I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Cricetinae
3.
EMBO Rep ; 23(12): e55648, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36285486

RESUMO

Methylation of the mRNA 5' cap by cellular methyltransferases enables efficient translation and avoids recognition by innate immune factors. Coronaviruses encode viral 2'-O-methyltransferases to shield their RNA from host factors. Here, we generate recombinant SARS-CoV-2 harboring a catalytically inactive 2'-O-methyltransferase Nsp16, Nsp16mut, and analyze viral replication in human lung epithelial cells. Although replication is only slightly attenuated, we find SARS-CoV-2 Nsp16mut to be highly immunogenic, resulting in a strongly enhanced release of type I interferon upon infection. The elevated immunogenicity of Nsp16mut is absent in cells lacking the RNA sensor MDA5. In addition, we report that Nsp16mut is highly sensitive to type I IFN treatment and demonstrate that this strong antiviral effect of type I IFN is mediated by the restriction factor IFIT1. Together, we describe a dual role for the 2'-O-methyltransferase Nsp16 during SARS-CoV-2 replication in avoiding efficient recognition by MDA5 and in shielding its RNA from interferon-induced antiviral responses, thereby identifying Nsp16 as a promising target for generating attenuated and highly immunogenic SARS-CoV-2 strains and as a potential candidate for therapeutic intervention.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA , Metiltransferases/genética , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Bioorg Chem ; 143: 107035, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199140

RESUMO

Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Metiltransferases/metabolismo , Metilação , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , SARS-CoV-2/metabolismo , RNA Viral , Zika virus/metabolismo
5.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792173

RESUMO

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Inibidores Enzimáticos , Metiltransferases , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Metiltransferases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Sítios de Ligação , Exorribonucleases
6.
Mol Divers ; 27(2): 635-649, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35538380

RESUMO

The coronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is affecting human life in an unprecedented manner and has become a global public health emergency. Identification of novel inhibitors of viral infection/replication is the utmost priority to curtail COVID-19 progression. A pre-requisite for such inhibitors is good bioavailability, non-toxicity and serum stability. Computational studies have shown that curcumin can be a candidate inhibitor of certain SARS-CoV-2 proteins; however, poor bio-availability of curcumin limits its possible therapeutic application. To circumvent this limitation, we have used mitocurcumin (MC), a triphenyl phosphonium conjugated curcumin derivative, to study the ability to inhibit SARS-CoV-2 infection using molecular docking and molecular dynamics (MD) simulation. MC is serum stable and several fold more potent as compared to curcumin. Molecular docking studies revealed that MC can bind at active site of SARS-CoV-2 ADP Ribose Phosphatase (NSP3) and SARS-CoV-2 methyltransferase (NSP10-NSP16 complex) with a high binding energy of - 10.3 kcal/mol and - 10.4 kcal/mol, respectively. MD simulation (100 ns) studies revealed that binding of MC to NSP3 and NSP16 resulted in a stable complex. MC interacted with critical residues of NSP3 macro-domain and NSP10-NSP16 complex and occupied their active sites. NSP3 is known to suppress host immune responses whereas NSP10-NSP16 complex is known to prevent immune recognition of viral mRNA. Our study suggests that MC can potentially inhibit the activity of NSP3 and NSP10-NSP16 complex, resulting in compromised viral immune evasion mechanism, and thereby accentuate the innate immune mediated clearance of viral load.


Assuntos
COVID-19 , Curcumina , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Curcumina/farmacologia , Simulação de Acoplamento Molecular , Evasão da Resposta Imune , Proteínas não Estruturais Virais
7.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677825

RESUMO

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Assuntos
Antivirais , Metiltransferases , SARS-CoV-2 , Metilação , Metiltransferases/antagonistas & inibidores , RNA Mensageiro/genética , RNA Viral/genética , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia
8.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770656

RESUMO

During the past three decades, humans have been confronted with different new coronavirus outbreaks. Since the end of the year 2019, COVID-19 threatens the world as a rapidly spreading infectious disease. For this work, we targeted the non-structural protein 16 (nsp16) as a key protein of SARS-CoV-2, SARS-CoV-1 and MERS-CoV to develop broad-spectrum inhibitors of nsp16. Computational methods were used to filter candidates from a natural product-based library of 224,205 compounds obtained from the ZINC database. The binding of the candidates to nsp16 was assessed using virtual screening with VINA LC, and molecular docking with AutoDock 4.2.6. The top 9 compounds were bound to the nsp16 protein of SARS-CoV-2, SARS-CoV-1, and MERS-CoV with the lowest binding energies (LBEs) in the range of -9.0 to -13.0 kcal with VINA LC. The AutoDock-based LBEs for nsp16 of SARS-CoV-2 ranged from -11.42 to -16.11 kcal/mol with predicted inhibition constants (pKi) from 0.002 to 4.51 nM, the natural substrate S-adenosyl methionine (SAM) was used as control. In silico results were verified by microscale thermophoresis as in vitro assay. The candidates were investigated further for their cytotoxicity in normal MRC-5 lung fibroblasts to determine their therapeutic indices. Here, the IC50 values of all three compounds were >10 µM. In summary, we identified three novel SARS-CoV-2 inhibitors, two of which showed broad-spectrum activity to nsp16 in SARS-CoV-2, SARS-CoV-1, and MERS-CoV. All three compounds are coumarin derivatives that contain chromen-2-one in their scaffolds.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , S-Adenosilmetionina
9.
Methods ; 195: 23-28, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33737214

RESUMO

Recent emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transpired into pandemic coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been rapidly transmitted across the globe within a short period of time, with more than 106 million cases and 2.3 million deaths. The continuous rise in worldwide cases of COVID-19, transmission dynamics of SARS-CoV-2 including re-infections and enormous case-fatality rates emphasizes the urgent need of potential preventive and therapeutic measures. The development of effective therapeutic and preventive measures relies on understanding the molecular and cellular mechanism of replication exhibited by SARS-CoV-2. The structure of SARS-CoV-2 is ranging from 90-120 nm that comprises surface viral proteins including spike, envelope, membrane which are attached in host lipid bilayer containing the helical nucleocapsid comprising viral RNA. Spike (S) glycoprotein initiates the attachment of SARS-CoV-2 with a widely expressed cellular receptor angiotensin-converting enzyme 2 (ACE2), and subsequent S glycoprotein priming via serine protease TMPRSS2. Prominently, comprehensive analysis of structural insights into the crucial SARS-CoV-2 proteins may lead us to design effective therapeutics molecules. The present article, emphasizes the molecular and structural perspective of SARS-CoV-2 including mechanistic insights in its replication.


Assuntos
SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologia , Animais , Sítios de Ligação/fisiologia , COVID-19/epidemiologia , COVID-19/metabolismo , Humanos , Estrutura Secundária de Proteína , Internalização do Vírus
10.
J Mol Struct ; 1261: 132951, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35369609

RESUMO

COVID-19 is a disease caused by the SARS-CoV-2 virus and represents one of the greatest health problems that humanity faces at the moment. Therefore, efforts have been made with the objective of seeking therapies that could be effective in combating this problematic. In the search for ligands, computational chemistry plays an essential role, since it allows the screening of thousands of molecules on a given target, in order to save time and money for the in vitro or in vivo pharmacological stage. In this paper, we perform a virtual screening by docking looking for potential inhibitors of the NSP16-NSP10 protein dimer (methyltransferase) from SARS-CoV-2, by evaluating a homemade databank of molecules found in plants of the Caatinga Brazilian biome, compounds from ZINC online molecular database, as well as structural analogues of the enzymatic cofactor s-adenosylmethionine (SAM) and a known inhibitor in the literature, sinefungin (SFG), provided at PubChem database. All the evaluated sets presented molecules that deserve attention, highlighting four compounds from ZINC as the most promising ligands. These results contribute to the discovery of new molecular hits, in the search of potential agents against SARS-CoV-2 virus, still unveiling a pathway that can be used in combined therapies.

11.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430451

RESUMO

Methyltransferases (MTases) enzymes, responsible for RNA capping into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are emerging important targets for the design of new anti-SARS-CoV-2 agents. Here, analogs of S-adenosylmethionine (SAM), obtained from the bioisosteric substitution of the sulfonium and amino acid groups, were evaluated by rigorous computational modeling techniques such as molecular dynamics (MD) simulations followed by relative binding free analysis against nsp16/nsp10 complex from SARS-CoV-2. The most potent inhibitor (2a) shows the lowest binding free energy (-58.75 Kcal/mol) and more potency than Sinefungin (SFG) (-39.8 Kcal/mol), a pan-MTase inhibitor, which agrees with experimental observations. Besides, our results suggest that the total binding free energy of each evaluated SAM analog is driven by van der Waals interactions which can explain their poor cell permeability, as observed in experimental essays. Overall, we provide a structural and energetic analysis for the inhibition of the nsp16/nsp10 complex involving the evaluated SAM analogs as potential inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/farmacologia , S-Adenosilmetionina/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Metiltransferases/metabolismo
12.
Molecules ; 27(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35566072

RESUMO

The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2'-O-methyltransferase (nsp16) enzyme that is crucial for effective translation of viral RNA and virus replication. For methylation of substrates, nsp16 utilizes S-adenosyl methionine (SAM). Binding of a small molecule in the protein site where SAM binds can disrupt the synthesis of viral proteins and, as a result, the replication of the virus. Here, we performed high-throughput docking into the SAM-binding site of nsp16 for almost 40 thousand structures, prepared for compounds from three libraries: Enamine Coronavirus Library, Enamine Nucleoside Mimetics Library, and Chemdiv Nucleoside Analogue Library. For the top scoring ligands, semi-empirical quantum-chemical calculations were performed, to better estimate protein-ligand binding enthalpy. Relying upon the calculated binding energies and predicted docking poses, we selected 21 compounds for experimental testing.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Metiltransferases/química , Simulação de Acoplamento Molecular , Pandemias , RNA Viral/genética , S-Adenosilmetionina , Proteínas não Estruturais Virais/metabolismo
13.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408684

RESUMO

As a continuation of our earlier work against SARS-CoV-2, seven FDA-approved drugs were designated as the best SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (2'OMTase) inhibitors through 3009 compounds. The in silico inhibitory potential of the examined compounds against SARS-CoV-2 nsp16-nsp10 2'-o-methyltransferase (PDB ID: (6W4H) was conducted through a multi-step screening approach. At the beginning, molecular fingerprints experiment with SAM (S-Adenosylmethionine), the co-crystallized ligand of the targeted enzyme, unveiled the resemblance of 147 drugs. Then, a structural similarity experiment recommended 26 compounds. Therefore, the 26 compounds were docked against 2'OMTase to reveal the potential inhibitory effect of seven promising compounds (Protirelin, (1187), Calcium folinate (1913), Raltegravir (1995), Regadenoson (2176), Ertapenem (2396), Methylergometrine (2532), and Thiamine pyrophosphate hydrochloride (2612)). Out of the docked ligands, Ertapenem (2396) showed an ideal binding mode like that of the co-crystallized ligand (SAM). It occupied all sub-pockets of the active site and bound the crucial amino acids. Accordingly, some MD simulation experiments (RMSD, RMSF, Rg, SASA, and H-bonding) have been conducted for the 2'OMTase-Ertapenem complex over 100 ns. The performed MD experiments verified the correct binding mode of Ertapenem against 2'OMTase exhibiting low energy and optimal dynamics. Finally, MM-PBSA studies indicated that Ertapenem bonded advantageously to the targeted protein with a free energy value of -43 KJ/mol. Furthermore, the binding free energy analysis revealed the essential amino acids of 2'OMTase that served positively to the binding. The achieved results bring hope to find a treatment for COVID-19 via in vitro and in vivo studies for the pointed compounds.


Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas Virais Reguladoras e Acessórias , Ertapenem/farmacologia , Ligantes , Metiltransferases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores
14.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554697

RESUMO

Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.


Assuntos
Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Interferons/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Betacoronavirus/imunologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/prevenção & controle , Diarreia/patologia , Diarreia/virologia , Modelos Animais de Doenças , Endorribonucleases/antagonistas & inibidores , Fezes/virologia , Íleo/patologia , Imunidade Inata , Jejuno/patologia , Pandemias , Pneumonia Viral/imunologia , Vírus da Diarreia Epidêmica Suína/genética , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Suínos , Doenças dos Suínos/virologia , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
15.
Chem Phys Lett ; 774: 138618, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33850334

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in an international health emergency. The SARS-CoV-2 nsp16 is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase, and with its cofactor nsp10, is responsible for RNA cap formation. This study aimed to identify small molecules binding to the SAM-binding site of the nsp10-nsp16 heterodimer for potential inhibition of methyltransferase activity. By screening a library of 300 compounds, 30 compounds were selected based on binding scores, side-effects, and availability. Following more advanced docking, six potential lead compounds were further investigated using molecular dynamics simulations. This revealed the dietary compound oleuropein as a potential methyltransferase inhibitor.

16.
J Enzyme Inhib Med Chem ; 36(1): 727-736, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33685335

RESUMO

The novel coronavirus disease COVID-19, caused by the virus SARS CoV-2, has exerted a significant unprecedented economic and medical crisis, in addition to its impact on the daily life and health care systems all over the world. Regrettably, no vaccines or drugs are currently available for this new critical emerging human disease. Joining the global fight against COVID-19, in this study we aim at identifying a potential novel inhibitor for SARS COV-2 2'-O-methyltransferase (nsp16) which is one of the most attractive targets in the virus life cycle, responsible for the viral RNA protection via a cap formation process. Firstly, nsp16 enzyme bound to Sinefungin was retrieved from the protein data bank (PDB ID: 6WKQ), then, a 3D pharmacophore model was constructed to be applied to screen 48 Million drug-like compounds of the Zinc database. This resulted in only 24 compounds which were subsequently docked into the enzyme. The best four score-ordered hits from the docking outcome exhibited better scores compared to Sinefungin. Finally, three molecular dynamics (MD) simulation experiments for 150 ns were carried out as a refinement step for our proposed approach. The MD and MM-PBSA outputs revealed compound 11 as the best potential nsp16 inhibitor herein identified, as it displayed a better stability and average binding free energy for the ligand-enzyme complex compared to Sinefungin.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Antivirais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Produtos Farmacêuticos , Bases de Dados de Proteínas , Estabilidade de Medicamentos , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Metiltransferases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , Termodinâmica , Proteínas não Estruturais Virais/antagonistas & inibidores
17.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008724

RESUMO

The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2'-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2'-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.


Assuntos
Metiltransferases/metabolismo , Capuzes de RNA/química , Capuzes de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Biocatálise , Fenômenos Biomecânicos , Metilação , Metiltransferases/química , Simulação de Dinâmica Molecular , Teoria Quântica , Processamento Pós-Transcricional do RNA , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química
18.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118255

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Animais Recém-Nascidos , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida , Suínos , Doenças dos Suínos/patologia , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
J Recept Signal Transduct Res ; 40(6): 605-612, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32476594

RESUMO

Recently, a pathogen has been identified as a novel coronavirus (SARS-CoV-2) and found to trigger novel pneumonia (COVID-19) in human beings and some other mammals. The uncontrolled release of cytokines is seen from the primary stages of symptoms to last acute respiratory distress syndrome (ARDS). Thus, it is necessary to find out safe and effective drugs against this deadly coronavirus as soon as possible. Here, we downloaded the three-dimensional model of NSP10/NSP16 methyltransferase (PDB-ID: 6w6l) and main protease (PDB-ID: 6lu7) of COVID-19. Using these molecular models, we performed virtual screening with our anti-viral, inti-infectious, and anti-protease compounds, which are attractive therapeutics to prevent infection of the COVID-19. We found that top screened compound binds with protein molecules with good dock score with the help of hydrophobic interactions and hydrogen bonding. We observed that protease complexed with Cyclocytidine hydrochloride (anti-viral and anti-cancer), Trifluridine (anti-viral), Adonitol, and Meropenem (anti-bacterial), and Penciclovir (anti-viral) bound with a good docking score ranging from -6.8 to -5.1 (Kcal/mol). Further, NSP10/NSP16 methyltransferase complexed with Telbivudine, Oxytetracycline dihydrate (anti-viral), Methylgallate (anti-malarial), 2-deoxyglucose and Daphnetin (anti-cancer) from the docking score of -7.0 to -5.7 (Kcal/mol). In conclusion, the selected compounds may be used as a novel therapeutic agent to combat this deadly pandemic disease, SARS-CoV-2 infection, but needs further experimental research.HighlightsNSP10/NSP16 methyltransferase and main protease complex of SARS CoV-2 bind with selected drugs.NSP10/NSP16 methyltransferase and protease interacted with drugs by hydrophobic interactions.Compounds show good DG binging free energy with protein complexes.Ligands were found to follow the Lipinski rule of five.


Assuntos
Antivirais/química , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/química , Proteínas Virais Reguladoras e Acessórias/química , Aciclovir/análogos & derivados , Aciclovir/química , Aciclovir/uso terapêutico , Ancitabina/química , Ancitabina/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos , Guanina , Humanos , Meropeném/química , Meropeném/uso terapêutico , Metiltransferases , Modelos Moleculares , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/virologia , Conformação Proteica/efeitos dos fármacos , Ribitol/química , Ribitol/uso terapêutico , SARS-CoV-2 , Trifluridina/química , Trifluridina/uso terapêutico , Interface Usuário-Computador , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/ultraestrutura , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/ultraestrutura
20.
Biochem Biophys Res Commun ; 459(2): 270-276, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25732088

RESUMO

Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication.


Assuntos
Metiltransferases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Chlorocebus aethiops , Exorribonucleases/genética , Exorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Metiltransferases/química , Metiltransferases/genética , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação , Células Vero , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA