Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Mol Cell ; 82(23): 4443-4457.e9, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423630

RESUMO

Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.


Assuntos
Cromatina , Schizosaccharomyces , Cromatina/genética , Nucleofosmina , Nucléolo Celular/genética , Membrana Nuclear , Schizosaccharomyces/genética , Ribossomos/genética
2.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30981631

RESUMO

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Sequências Repetitivas de Aminoácidos/genética , Esclerose Lateral Amiotrófica/patologia , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipeptídeos/genética , Humanos , Nucleofosmina , Peptídeos/genética , Poli A/genética , RNA Ribossômico/genética
3.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
4.
Circulation ; 149(25): 1982-2001, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38390737

RESUMO

BACKGROUND: Reparative macrophages play a crucial role in limiting excessive fibrosis and promoting cardiac repair after myocardial infarction (MI), highlighting the significance of enhancing their reparative phenotype for wound healing. Metabolic adaptation orchestrates the phenotypic transition of macrophages; however, the precise mechanisms governing metabolic reprogramming of cardiac reparative macrophages remain poorly understood. In this study, we investigated the role of NPM1 (nucleophosmin 1) in the metabolic and phenotypic shift of cardiac macrophages in the context of MI and explored the therapeutic effect of targeting NPM1 for ischemic tissue repair. METHODS: Peripheral blood mononuclear cells were obtained from healthy individuals and patients with MI to explore NPM1 expression and its correlation with prognostic indicators. Through RNA sequencing, metabolite profiling, histology, and phenotype analyses, we investigated the role of NPM1 in postinfarct cardiac repair using macrophage-specific NPM1 knockout mice. Epigenetic experiments were conducted to study the mechanisms underlying metabolic reprogramming and phenotype transition of NPM1-deficient cardiac macrophages. The therapeutic efficacy of antisense oligonucleotide and inhibitor targeting NPM1 was then assessed in wild-type mice with MI. RESULTS: NPM1 expression was upregulated in the peripheral blood mononuclear cells from patients with MI that closely correlated with adverse prognostic indicators of MI. Macrophage-specific NPM1 deletion reduced infarct size, promoted angiogenesis, and suppressed tissue fibrosis, in turn improving cardiac function and protecting against adverse cardiac remodeling after MI. Furthermore, NPM1 deficiency boosted the reparative function of cardiac macrophages by shifting macrophage metabolism from the inflammatory glycolytic system to oxygen-driven mitochondrial energy production. The oligomeric NPM1 recruited histone demethylase KDM5b to the promoter of Tsc1 (TSC complex subunit 1), the mTOR (mechanistic target of rapamycin kinase) complex inhibitor, reduced histone H3K4me3 modification, and inhibited TSC1 expression, which then facilitated mTOR-related inflammatory glycolysis and antagonized the reparative function of cardiac macrophages. The in vivo administration of antisense oligonucleotide targeting NPM1 or oligomerization inhibitor NSC348884 substantially ameliorated tissue injury and enhanced cardiac recovery in mice after MI. CONCLUSIONS: Our findings uncover the key role of epigenetic factor NPM1 in impeding postinfarction cardiac repair by remodeling metabolism pattern and impairing the reparative function of cardiac macrophages. NPM1 may serve as a promising prognostic biomarker and a valuable therapeutic target for heart failure after MI.


Assuntos
Epigênese Genética , Macrófagos , Infarto do Miocárdio , Proteínas Nucleares , Nucleofosmina , Animais , Macrófagos/metabolismo , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Camundongos Knockout , Masculino , Reprogramação Celular , Feminino , Glicólise , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Biol Cell ; 116(1): e202300049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029384

RESUMO

BACKGROUND INFORMATION: Coiled-coil domain-containing protein-124 (Ccdc124) is a conserved eukaryotic ribosome-associated RNA-binding protein which is involved in resuming ribosome activity after stress-related translational shutdown. Ccdc124 protein is also detected at cellular localizations devoid of ribosomes, such as the centrosome, or the cytokinetic midbody, but its translation-independent cellular function is currently unknown. RESULTS: By using an unbiased LC-MS/MS-based proteomics approach in human embryonic kidney (HEK293) cells, we identified novel Ccdc124 partners and mapped the cellular organization of interacting proteins, a subset of which are known to be involved in nucleoli biogenesis and function. We then identified a novel interaction between the cancer-associated multifunctional nucleolar marker nucleophosmin (Npm1) and Ccdc124, and we characterized this interaction both in HEK293 (human embryonic kidney) and U2OS (osteosarcoma) cells. As expected, in both types of cells, Npm1 and Ccdc124 proteins colocalized within the nucleolus when assayed by immunocytochemical methods, or by monitoring the localization of green fluorescent protein-tagged Ccdc124. CONCLUSIONS: The nucleolar localization of Ccdc124 was impaired when Npm1 translocates from the nucleolus to the nucleoplasm in response to treatment with the DNA-intercalator and Topo2 inhibitor chemotherapeutic drug doxorubicin. Npm1 is critically involved in maintaining genomic stability by mediating various DNA-repair pathways, and over-expression of Npm1 or specific NPM1 mutations have been previously associated with proliferative diseases, such as acute myelogenous leukemia, anaplastic large-cell lymphoma, and solid cancers originating from different tissues. SIGNIFICANCE: Identification of Ccdc124 as a novel interaction partner of Nmp1 within the frame of molecular mechanisms involving nucleolar stress-sensing and DNA-damage response is expected to provide novel insights into the biology of cancers associated with aberrations in NPM1.


Assuntos
Neoplasias , Nucleofosmina , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Cromatografia Líquida , Células HEK293 , Proteômica , Espectrometria de Massas em Tandem , Ribossomos/metabolismo , Neoplasias/metabolismo , DNA/metabolismo
6.
Ann Hematol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884787

RESUMO

FLT3-ITD and NPM1 mutations are key to defining the genetic risk profile of acute myeloid leukemia (AML). We aimed to assess the prognostic features of the FLT3-ITD and NPM1 mutations in old and/or unfit individuals with AML treated with non-intensive therapies in the era before azacitidine-venetoclax approbation. The results of various non-intensive regimens were also compared. We conducted a retrospective analysis that included patients treated with different non-intensive regimens, between 2007 and 2020 from PETHEMA AML registry. We compiled 707 patients with a median age of 74 years and median follow-up time of 37.7 months. FLT3-ITD patients (N = 98) showed a non-significant difference in overall survival (OS) compared to FLT3-ITD negative-patients (N = 608) (P = 0.17, median OS was 5 vs 7.3 months respectively). NPM1-mutated patients (N = 144) also showed a non-significant difference with NPM1 wild type (N = 519) patients (P = 0.25, median OS 7.2 vs 6.8 respectively). In the Cox regression analysis neither NPM1 nor FLT3-ITD nor age were significant prognostic variables for OS prediction. Abnormal karyotype and a high leukocyte count showed a statistically significant deleterious effect. Azacitidine also showed better survival compared to FLUGA (low dose cytarabine plus fludarabine). NPM1 and FLT3-ITD seem to lack prognostic value in older/unfit AML patients treated with non-intensive regimens other than azacitidine-venetoclax combination.

7.
Pathobiology ; 91(1): 18-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36944324

RESUMO

Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Alelos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/genética
8.
Bioorg Chem ; 147: 107404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678777

RESUMO

Histidine (His) plays a key role in mediating protein interactions and its unique side chain determines pH responsive self-assembling processes and thus in the formation of nanostructures. In this study, To identify novel self-assembling bioinspired sequences, we analyzed a series of peptide sequences obtained through the point mutation of aromatic residues of 264-277 fragment of nucleophosmin 1 (NPM1) with single and double histidines. Through several orthogonal biophysical techniques and under different pH and ionic strength conditions we evaluated the effects of these substitutions in the amyloidogenic features of derived peptides. The results clearly indicate that both the type of aromatic mutated residue and its position can have different effect on amyloid-like behaviors. They corroborate the crucial role exerted by Tyr271 in the self-assembling process of CTD of NPM1 in AML mutated form and add novel insights in the accurate investigation of how side chain orientations can determine successful design of innovative bioinspired materials.


Assuntos
Histidina , Proteínas Nucleares , Nucleofosmina , Humanos , Sequência de Aminoácidos , Amiloide/química , Histidina/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética
9.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495326

RESUMO

Adaptation to different forms of environmental stress is crucial for maintaining essential cellular functions and survival. The nucleolus plays a decisive role as a signaling hub for coordinating cellular responses to various extrinsic and intrinsic cues. p53 levels are normally kept low in unstressed cells, mainly due to E3 ubiquitin ligase MDM2-mediated degradation. Under stress, nucleophosmin (NPM) relocates from the nucleolus to the nucleoplasm and binds MDM2, thereby preventing degradation of p53 and allowing cell-cycle arrest and DNA repair. Here, we demonstrate that the mammalian sirtuin SIRT7 is an essential component for the regulation of p53 stability during stress responses induced by ultraviolet (UV) irradiation. The catalytic activity of SIRT7 is substantially increased upon UV irradiation through ataxia telangiectasia mutated and Rad3 related (ATR)-mediated phosphorylation, which promotes efficient deacetylation of the SIRT7 target NPM. Deacetylation is required for stress-dependent relocation of NPM into the nucleoplasm and MDM2 binding, thereby preventing ubiquitination and degradation of p53. In the absence of SIRT7, stress-dependent stabilization of p53 is abrogated, both in vitro and in vivo, impairing cellular stress responses. The study uncovers an essential SIRT7-dependent mechanism for stabilization of the tumor suppressor p53 in response to genotoxic stress.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Acetilação/efeitos da radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Catálise/efeitos da radiação , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Nucléolo Celular/efeitos da radiação , Humanos , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleofosmina , Fosforilação/efeitos da radiação , Estabilidade Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transcrição Gênica/efeitos da radiação , Ubiquitinação/efeitos da radiação
10.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255885

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.


Assuntos
Antifibrinolíticos , Leucemia Mieloide Aguda , Adulto , Humanos , Criança , Aminoácidos , Proteínas Amiloidogênicas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética
11.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791118

RESUMO

Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.


Assuntos
Diferenciação Celular , Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Nucleofosmina , Proteômica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Diferenciação Celular/genética , Proteômica/métodos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Monócitos/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto
12.
Trends Biochem Sci ; 44(12): 993-995, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668600

RESUMO

Frottin et al. uncovered a role for the nucleolus as a key quality control compartment that regulates misfolded nuclear proteins. This nonmembrane compartment achieves this by forming liquid-like protein condensates that aid protein refolding in a heat-shock protein (Hsp)70-dependent manner. This liquid-liquid phase separation (LLPS)-mediated nuclear quality control mechanism is perturbed during neurodegeneration.


Assuntos
Proteínas Nucleares
13.
Biochem Biophys Res Commun ; 642: 35-40, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36543022

RESUMO

The nucleolus is a membrane-less structure that exists in the nucleus of cells and plays a crucial role in ribosome biogenesis. It is known to be formed through liquid-liquid phase separation (LLPS) caused by the interaction of various nucleolar proteins and nucleic acids. Recently, many studies on LLPS with nucleolar proteins in the presence of RNA showed the importance of electrostatic interactions and cation-pi interactions among RNA and intrinsically disordered regions of proteins. However, it is reported that the initiation of nucleolar formation is RNA polymerase I-independent. The mechanism of nucleolar formation in the early stage remains obscure. In this study, we showed for the first time that the ribosomal protein uL30 and a major nucleolar protein, nucleophosmin (NPM) formed liquid droplets in vitro in the absence of RNA. The liquid droplet formation with uL30 and NPM may be derived from the interaction between the basic regions of uL30 and acidic regions of the oligomeric NPM. The knockdown of uL30 in cells significantly reduced the number of nucleoli, while it did not alter the protein level of NPM. The results showed that LLPS and nucleolar formation were affected by changes in uL30 levels. Our results suggest that the protein-protein interaction between nucleolar proteins may play an important role in nucleolar formation in the early stages when the rRNA content is very low.


Assuntos
Nucleofosmina , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , RNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Nucléolo Celular/metabolismo
14.
Acta Haematol ; 146(5): 408-412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231772

RESUMO

We describe a case of acute myeloid leukemia with NPM1 mutation and disseminated leukemia cutis in a very old patient, who achieved a long-lasting response to the azacitidine/venetoclax combination with molecular complete remission, given the potential value of this rarely observed clinical outcome.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Azacitidina/uso terapêutico , Mutação , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 367-381, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36942988

RESUMO

Esophageal squamous cell carcinoma (ESCC) is characterized by extensive metastasis and poor prognosis. Long noncoding RNAs (lncRNAs) have been shown to play important roles in ESCC. However, the specific roles of lncRNAs in ESCC tumorigenesis and metastasis remain largely unknown. Here, we investigate LINC01088 in ESCC. Differentially expressed LINC01088 levels are screened from the GEO database. We find that LINC01088 is expressed at low level in collected clinical samples and is correlated with vascular tumor emboli and poor overall survival time of patients after surgery. LINC01088 inhibits not only ESCC cell migration and invasion in vitro, but also tumorigenesis and metastasis in vivo. Mechanistically, LINC01088 directly interacts with nucleophosmin (NPM1) and increases the expression of NPM1 in the nucleoplasm compared to that in the nucleolar region. LINC01088 decreases mutant p53 (mut-p53) expression and rescues the transcriptional activity of p53 by targeting the NPM1-HDM2-p53 axis. LINC01088 may also interfere with the DNA repair function of NPM1 by affecting its translocation. Our results highlight the potential of LINC01088 as a prognostic biomarker and therapeutic target of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Nucleofosmina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834572

RESUMO

Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase
17.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834892

RESUMO

Most oropharyngeal squamous cell carcinomas (OPSCCs) are human papillomavirus (HPV)-associated, high-risk (HR) cancers that show a better response to chemoradiotherapy and are associated with improved survival. Nucleophosmin (NPM, also called NPM1/B23) is a nucleolar phosphoprotein that plays different roles within the cell, such as ribosomal synthesis, cell cycle regulation, DNA damage repair and centrosome duplication. NPM is also known as an activator of inflammatory pathways. An increase in NPM expression has been observed in vitro in E6/E7 overexpressing cells and is involved in HPV assembly. In this retrospective study, we investigated the relationship between the immunohistochemical (IHC) expression of NPM and HR-HPV viral load, assayed by RNAScope in situ hybridization (ISH), in ten patients with histologically confirmed p16-positive OPSCC. Our findings show that there is a positive correlation between NPM expression and HR-HPV mRNA (Rs = 0.70, p = 0.03), and a linear regression (r2 = 0.55; p = 0.01). These data support the hypothesis that NPM IHC, together with HPV RNAScope, could be used as a predictor of transcriptionally active HPV presence and tumor progression, which is useful for therapy decisions. This study includes a small cohort of patients and, cannot report conclusive findings. Further studies with large series of patients are needed to support our hypothesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina , DNA Viral/genética , Papillomavirus Humano , Nucleofosmina , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/patologia , Papillomaviridae/genética , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Viral
18.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675134

RESUMO

Acute myeloid leukemia (AML) with a nucleophosmin 1 (NPM1) mutation is a unique subtype of adult leukemia. Recent studies show that NPM1-mutated AML has high autophagy activity. However, the mechanism for upholding the high autophagic level is still not fully elucidated. In this study, we first identified that tumor protein p53 inducible nuclear protein 2 (TP53INP2) was highly expressed and cytoplasmically localized in NPM1-mutated AML cells. Subsequent data showed that the expression of TP53INP2 was upregulated by fat mass and obesity-associated protein (FTO)-mediated m6A modification. Meanwhile, TP53INP2 was delocalized to the cytoplasm by interacting with NPM1 mutants. Functionally, cytoplasmic TP53INP2 enhanced autophagy activity by promoting the interaction of microtubule-associated protein 1 light chain 3 (LC3) - autophagy-related 7 (ATG7) and further facilitated the survival of leukemia cells. Taken together, our study indicates that TP53INP2 plays an oncogenic role in maintaining the high autophagy activity of NPM1-mutated AML and provides further insight into autophagy-targeted therapy of this leukemia subtype.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Adulto , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Autofagia/genética , Citoplasma/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
19.
J Biol Chem ; 297(2): 100935, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34224728

RESUMO

Ras-association domain family (RASSF) proteins are encoded by numerous tumor suppressor genes that frequently become silenced in human cancers. RASSF10 is downregulated by promoter hypermethylation in cancers and has been shown to inhibit cell proliferation; however, the molecular mechanism(s) remains poorly understood. Here, we demonstrate for the first time that RASSF10 inhibits Cdk1/cyclin-B kinase complex formation to maintain stable levels of cyclin-B for inducing mitotic arrest during cell cycle. Using LC-MS/MS, live cell imaging, and biochemical approaches, we identify Nucleophosmin (NPM) as a novel functional target of RASSF10 and revealed that RASSF10 expression promoted the nuclear accumulation of GADD45a and knockdown of either NPM or GADD45a, resulting in impairment of RASSF10-mediated G2/M phase arrest. Furthermore, we demonstrate that RASSF10 is a substrate for the E3 ligase ring finger protein 2 (RNF2) and show that an NPM-dependent downregulation of RNF2 expression is critical to maintain stable RASSF10 levels in cells for efficient mitotic arrest. Interestingly, the Kaplan-Meier plot analysis shows a positive correlation of RASSF10 and NPM expression with greater gastric cancer patient survival and the reverse with expression of RNF2, suggesting that they may have a role in cancer progression. Finally, our findings provide insights into the mode of action of the RASSF10/NPM/RNF2 signaling cascade on controlling cell proliferation and may represent a novel therapeutic avenue for the prevention of gastric cancer metastasis.


Assuntos
Proteínas Nucleares , Complexo Repressor Polycomb 1 , Neoplasias Gástricas , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Nucleofosmina
20.
Trends Genet ; 35(10): 768-780, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31434627

RESUMO

The nuclear organelle the nucleolus and the transcription factor nuclear factor of κ-light-chain-enhancer of activated B cells (NF-κB) are both central to the control of cellular homeostasis, dysregulated in common diseases and implicated in the ageing process. Until recently, it was believed that they acted independently to regulate homeostasis in health and disease. However, there is an emerging body of evidence suggesting that nucleoli and NF-κB signalling converge at multiple levels. Here we will review current understanding of this crosstalk. We will discuss activation of the NF-κB pathway by nucleolar stress and induction of apoptosis by nucleolar sequestration of NF-κB/RelA. We will also discuss the role of TIF-IA, COMMD1, and nucleophosmin, which are key players in this crosstalk, and the therapeutic relevance, particularly with respect to the antitumour effects of aspirin.


Assuntos
Nucléolo Celular/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Estresse Fisiológico , Morte Celular , Nucléolo Celular/genética , Proliferação de Células , DNA Polimerase I/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA