Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(1): 423-429, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38329186

RESUMO

Extracts from Drosophila preblastoderm embryos (DREX) form the basis of a powerful in vitro chromatin reconstitution system that assembles entire genomes into complex chromatin with physiological nucleosome spacing and polymer condensation. As the zygotic genome has not yet been activated in preblastoderm embryos, the reconstitution extract lacks endogenous transcription factors (TFs) and the RNA polymerase machinery. At the same time, it contains high levels of ATP-dependent nucleosome sliding enzymes that render the reconstituted chromatin dynamic. The naïve chromatin can be used to determine the intrinsic DNA binding properties of exogenous, usually recombinant TFs (or DNA binding proteins in general) in a complex chromatin context. Recent applications of the system include the description of cooperation and competition of Drosophila pioneer TFs for composite binding sites, and the characterization of nucleosome interactions of mammalian pioneer TFs in the heterologous system.


Assuntos
Cromatina , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Nucleossomos , Drosophila/metabolismo , Genômica , Mamíferos/metabolismo
2.
Exp Dermatol ; 32(7): 965-974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995066

RESUMO

Dermatomyositis (DM) is an idiopathic inflammatory myopathy belonging to the spectrum of autoimmune connective tissue diseases. DM patients present with antinuclear antibodies against Mi-2, also known as Chromodomain-helicase-DNA-binding protein 4 (CHD4). CHD4 is upregulated in DM skin biopsies and could potentially affect DM pathophysiology as it binds endogenous DNA with a high affinity (KD = 0.2 nM ± 0.076 nM) and forms CHD4-DNA complexes. The complexes are localized in the cytoplasm of UV-radiated and transfected HaCaTs and amplify the expression of interferon (IFN) regulated genes and the amount of functional CXCL10 protein stronger than DNA alone. The enhancement of the type I IFN pathway activation in HaCaTs through CHD4-DNA signalling suggests a possible mechanism for the sustainment of the pro-inflammatory vicious cycle in DM skin lesions.


Assuntos
Complexo Antígeno-Anticorpo , Dermatomiosite , Humanos , Autoantígenos/genética , DNA , DNA Helicases/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
3.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066057

RESUMO

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


Assuntos
Proteínas de Ciclo Celular/química , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerases/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios Proteicos/efeitos dos fármacos
4.
EMBO J ; 35(14): 1565-81, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27266525

RESUMO

Condensins associate with DNA and shape mitotic chromosomes. Condensins are enriched nearby highly expressed genes during mitosis, but how this binding is achieved and what features associated with transcription attract condensins remain unclear. Here, we report that condensin accumulates at or in the immediate vicinity of nucleosome-depleted regions during fission yeast mitosis. Two transcriptional coactivators, the Gcn5 histone acetyltransferase and the RSC chromatin-remodelling complex, bind to promoters adjoining condensin-binding sites and locally evict nucleosomes to facilitate condensin binding and allow efficient mitotic chromosome condensation. The function of Gcn5 is closely linked to condensin positioning, since neither the localization of topoisomerase II nor that of the cohesin loader Mis4 is altered in gcn5 mutant cells. We propose that nucleosomes act as a barrier for the initial binding of condensin and that nucleosome-depleted regions formed at highly expressed genes by transcriptional coactivators constitute access points into chromosomes where condensin binds free genomic DNA.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Schizosaccharomyces/fisiologia , Acetiltransferases/metabolismo , Composição de Bases , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo
5.
Plant Cell Environ ; 42(3): 762-770, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29920687

RESUMO

For successful growth and development, plants constantly have to gauge their environment. Plants are capable to monitor their current environmental conditions, and they are also able to integrate environmental conditions over time and store the information induced by the cues. In a developmental context, such an environmental memory is used to align developmental transitions with favourable environmental conditions. One temperature-related example of this is the transition to flowering after experiencing winter conditions, that is, vernalization. In the context of adaptation to stress, such an environmental memory is used to improve stress adaptation even when the stress cues are intermittent. A somatic stress memory has now been described for various stresses, including extreme temperatures, drought, and pathogen infection. At the molecular level, such a memory of the environment is often mediated by epigenetic and chromatin modifications. Histone modifications in particular play an important role. In this review, we will discuss and compare different types of temperature memory and the histone modifications, as well as the reader, writer, and eraser proteins involved.


Assuntos
Adaptação Fisiológica , Cromatina/fisiologia , Fenômenos Fisiológicos Vegetais , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Temperatura
6.
Curr Opin Plant Biol ; 81: 102590, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38968911

RESUMO

Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Histonas , Resposta ao Choque Térmico/genética , Histonas/metabolismo , Histonas/genética , Transcrição Gênica , Plantas/genética , Plantas/metabolismo
7.
FEBS J ; 284(24): 4216-4232, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29063705

RESUMO

The nucleosome remodelling and deacetylase (NuRD) complex is essential for the development of complex animals. NuRD has roles in regulating gene expression and repairing damaged DNA. The complex comprises at least six proteins with two or more paralogues of each protein routinely identified when the complex is purified from cell extracts. To understand the structure and function of NuRD, a map of direct subunit interactions is needed. Dozens of published studies have attempted to define direct inter-subunit connectivities. We propose that conclusions reported in many such studies are in fact ambiguous for one of several reasons. First, the expression of many NuRD subunits in bacteria is unlikely to lead to folded, active protein. Second, interaction studies carried out in cells that contain endogenous NuRD complex can lead to false positives through bridging of target proteins by endogenous components. Combining existing information on NuRD structure with a protocol designed to minimize false positives, we report a conservative and robust interaction map for the NuRD complex. We also suggest a 3D model of the complex that brings together the existing data on the complex. The issues and strategies discussed herein are also applicable to the analysis of a wide range of multi-subunit complexes. ENZYMES: Micrococcal nuclease (MNase), EC 3.1.31.1; histone deacetylase (HDAC), EC 3.5.1.98.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Nucleossomos/química , Mapeamento de Interação de Proteínas/métodos , Animais , Artefatos , Western Blotting , Escherichia coli , Células HEK293 , Células HeLa , Histona Desacetilase 1/química , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas , Coelhos , Proteínas Recombinantes de Fusão/química , Reticulócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA