RESUMO
Until recently, dynein was the least understood of the cytoskeletal motors. However, a wealth of new structural, mechanistic, and cell biological data is shedding light on how this complicated minus-end-directed, microtubule-based motor works. Cytoplasmic dynein-1 performs a wide array of functions in most eukaryotes, both in interphase, in which it transports organelles, proteins, mRNAs, and viruses, and in mitosis and meiosis. Mutations in dynein or its regulators are linked to neurodevelopmental and neurodegenerative diseases. Here, we begin by providing a synthesis of recent data to describe the current model of dynein's mechanochemical cycle. Next, we discuss regulators of dynein, with particular focus on those that directly interact with the motor to modulate its recruitment to microtubules, initiate cargo transport, or activate minus-end-directed motility.
Assuntos
Dineínas do Citoplasma/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Meiose/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Organelas/metabolismo , Organelas/fisiologiaRESUMO
Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.
Assuntos
Neoplasias Encefálicas , Glioma , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilases de Modificação do DNA/farmacologia , Metilases de Modificação do DNA/uso terapêutico , Enzimas Reparadoras do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Glioma/genética , Metionina/farmacologia , Camundongos Nus , O(6)-Metilguanina-DNA Metiltransferase , Racemetionina/farmacologia , Temozolomida/uso terapêutico , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genéticaRESUMO
We have studied whether the Warburg effect (uncontrolled glycolysis) in pancreatobiliary adenocarcinoma triggers cachexia in the patient. After 74 pancreatobiliary adenocarcinomas were removed by surgery, their glucose transporter-1 and four glycolytic enzymes were quantified using Western blotting. Based on the resulting data, the adenocarcinomas were equally divided into a group of low glycolysis (LG) and a group of high glycolysis (HG). Energy homeostasis was assessed in these cancer patients and in 74 non-cancer controls, using serum albumin and C-reactive protein and morphometrical analysis of abdominal skeletal muscle and fat on computed tomography scans. Some removed adenocarcinomas were transplanted in nude mice to see their impacts on host energy homeostasis. Separately, nude mice carrying tumor grafts of MiaPaCa-2 pancreatic adenocarcinoma cells were treated with the glycolytic inhibitor 3-bromopyruvate and with emodin that inhibited glycolysis by decreasing hypoxia-inducible factor-1α. Adenocarcinomas in both group LG and group HG impaired energy homeostasis in the cancer patients, compared to the non-cancer reference. The impaired energy homeostasis induced by the adenocarcinomas in group HG was more pronounced than that by the adenocarcinomas in group LG. When original adenocarcinomas were grown in nude mice, their glycolytic abilities determined the levels of hepatic gluconeogenesis, skeletal muscle proteolysis, adipose-tissue lipolysis, and weight loss in the mice. When MiaPaCa-2 cells were grown as tumors in nude mice, 3-bromopyruvate and emodin decreased tumor-induced glycolysis and cachexia, with the best effects being seen when the drugs were administered in combination. In conclusion, the Warburg effect in pancreatobiliary adenocarcinoma triggers cancer cachexia.
Assuntos
Adenocarcinoma , Emodina , Neoplasias Pancreáticas , Camundongos , Animais , Adenocarcinoma/patologia , Caquexia/etiologia , Caquexia/metabolismo , Neoplasias Pancreáticas/patologia , Camundongos NusRESUMO
Gastric cancer is highly malignant and recalcitrant to first line chemotherapies that include 5-fluorouracil (5-FU). Cancer cells are addicted to methionine for their proliferation and survival. Methionine addiction of cancer is known as the Hoffman effect. Methionine restriction with recombinant methioninase (rMETase) has been shown to selectively starve cancer cells and has shown synergy with cytotoxic chemotherapy including 5-FU. The present study aimed to investigate the efficacy of rMETase alone and the combination with 5-FU on poorly differentiated human gastric cancer cell lines (MKN45, NUGC3, and NUGC4) in vitro and vivo. rMETase suppressed the tumor growth of 3 kinds of poorly differentiated gastric cancer cells in vitro. The fluorescence ubiquitination-based cell cycle indicator (FUCCI) demonstrated cancer cells treated with rMETase were selectively trapped in the S/G2 phase of the cell cycle. In the present study, subcutaneous MKN45 gastric cancer models were randomized into four groups when the tumor volume reached 100 mm3: G1: untreated control; G2: 5-FU (i.p., 50 mg/kg, weekly, three weeks); G3: oral-rMETase (o-rMETase) (p.o., 100 units/body, daily, three weeks); G4: 5-FU with o-rMETase (5-FU; i.p., 50 mg/kg, weekly, three weeks o-rMETase; p.o., 100 units/body, daily, three weeks). All mice were sacrificed on day 22. Body weight and estimated tumor volume were measured twice a week. 5-FU and o-rMETase suppressed tumor growth as monotherapies on day 18 (p = 0.044 and p = 0.044). However, 5-FU combined with o-rMETase was significantly superior to each monotherapy (p < 0.001 and p < 0.001, respectively) and induced extensive necrosis compared to other groups. The combination of 5-FU and o-rMETase shows promise for transformative therapy for poorly differentiated gastric cancer in the clinic.
Assuntos
Fluoruracila , Neoplasias Gástricas , Camundongos , Humanos , Animais , Fluoruracila/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Liases de Carbono-Enxofre , Metionina/metabolismo , Proteínas Recombinantes/farmacologiaRESUMO
Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or F combined with the foam (F + coll). Cell-free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, cell vitality and content, histo(patho)logy of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed.Scaffolds did not affect mice weight development and organs, indicating no organ toxicity. Moreover, scaffolds maintained their size and shape and reflected a high cell viability prior to and following implantation. Coll or F + coll scaffolds seeded with cells yielded superior macroscopic properties compared to the controls. Mild signs of inflammation (foreign-body giant cells and hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable after explantation, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in explanted scaffolds compared to those before implantation, with no significant differences between scaffold subtypes, except for a higher maximum force in F + coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. a Lapine anterior cruciate ligament (LACL): red arrow, posterior cruciate ligament: yellow arrow. Medial anterior meniscotibial ligament: black arrow. b Explant culture to isolate LACL fibroblasts. c Scaffold variants: co: controls; F: functionalization by gas-phase fluorination; coll: collagen foam cross-linked with hexamethylene diisocyanate (HMDI). c1-2 Embroidery pattern of the scaffolds. d Scaffolds were seeded with LACL fibroblasts using a dynamical culturing approach as depicted. e Scaffolds were implanted subnuchally into nude mice, fixed at the nuchal ligament and sacrospinal muscle tendons. f Two weeks after implantation. g Summary of analyses performed. Scale bars 1 cm (b, d), 0.5 cm (c). (sketches drawn by G.S.-T. using Krita 4.1.7 [Krita foundation, The Netherlands]).
Assuntos
Colágeno , Halogenação , Humanos , Camundongos , Animais , Camundongos Nus , Engenharia Tecidual/métodos , PoliésteresRESUMO
BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological malignancies globally, and the development of innovative, effective drugs against EC remains a key issue. Phytoestrogen kaempferol exhibits anti-cancer effects, but the action mechanisms are still unclear. METHOD: MTT assays, colony-forming assays, flow cytometry, scratch healing, and transwell assays were used to evaluate the proliferation, apoptosis, cell cycle, migration, and invasion of both ER-subtype EC cells. Xenograft experiments were used to assess the effects of kaempferol inhibition on tumor growth. Next-generation RNA sequencing was used to compare the gene expression levels in vehicle-treated versus kaempferol-treated Ishikawa and HEC-1-A cells. A network pharmacology and molecular docking technique were applied to identify the anti-cancer mechanism of kaempferol, including the building of target-pathway network. GO analysis and KEGG pathway enrichment analysis were used to identify cancer-related targets. Finally, the study validated the mRNA and protein expression using real-time quantitative PCR, western blotting, and immunohistochemical analysis. RESULTS: Kaempferol was found to suppress the proliferation, promote apoptosis, and limit the tumor-forming, scratch healing, invasion, and migration capacities of EC cells. Kaempferol inhibited tumor growth and promotes apoptosis in a human endometrial cancer xenograft mouse model. No significant toxicity of kaempferol was found in human monocytes and normal cell lines at non-cytotoxic concentrations. No adverse effects or significant changes in body weight or organ coefficients were observed in 3-7 weeks' kaempferol-treated animals. The RNA sequencing, network pharmacology, and molecular docking approaches identified the overall survival-related differentially expressed gene HSD17B1. Interestingly, kaempferol upregulated HSD17B1 expression and sensitivity in ER-negative EC cells. Kaempferol differentially regulated PPARG expression in EC cells of different ER subtypes, independent of its effect on ESR1. HSD17B1 and HSD17B1-associated genes, such as ESR1, ESRRA, PPARG, AKT1, and AKR1C1\2\3, were involved in several estrogen metabolism pathways, such as steroid binding, 17-beta-hydroxysteroid dehydrogenase (NADP+) activity, steroid hormone biosynthesis, and regulation of hormone levels. The molecular basis of the effects of kaempferol treatment was evaluated. CONCLUSIONS: Kaempferol is a novel therapeutic candidate for EC via HSD17B1-related estrogen metabolism pathways. These results provide new insights into the efficiency of the medical translation of phytoestrogens.
Assuntos
Neoplasias do Endométrio , Estradiol Desidrogenases , Quempferóis , Farmacologia em Rede , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Estrogênios/metabolismo , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Esteroides/metabolismo , Estradiol Desidrogenases/metabolismoRESUMO
BACKGROUND: The ability of soluble dietary fibers (SDFs) to induce the production of IgA, especially in the intestine, is one of the health benefits of SDFs, but the mechanism involved is unclear. OBJECTIVE: This study was designed to identify the relationship between the induction of IgA by SDFs and the cecal short-chain fatty acid (SCFA) content, and to evaluate the importance of T cell-independent IgA production for SDF-induced IgA production. METHODS: We compared 3 SDFs-fructooligosaccharides (FO), indigestible glucan (IG), and polydextrose (PD). Male BALB/cAJcl mice or T cell-deficient BALB/cAJcl-nu/nu (nude) mice were fed diets supplemented with 1 SDF (3% w/w) for 10 wk, and IgA content in their feces, plasma, lung, and submandibular gland was measured. RESULTS: In BALB/cAJcl mice, the consumption of all 3 SDF diets induced fecal IgA production, but the response was stronger in the IG and PD groups than in the FO group. The IgA concentrations of the plasma and lung were also higher in the FO and PD groups, and these groups showed significantly higher cecal acetic and n-butyric acid content. In contrast, in nude mice, the induction of IgA production was identified only in fecal samples of mice fed the 3 SDF diets, although there were significant increases in cecal SCFA content. CONCLUSIONS: The induction of IgA production by SDFs occurred independent of T cells in the intestine, but in the plasma, lung, and submandibular gland it was T-cell dependent. SCFAs generated in the large intestine may influence the systemic immune system, but there is no clear relationship between the generation of SCFAs and intestinal IgA production in response to SDF consumption.
Assuntos
Ácidos Graxos Voláteis , Intestinos , Camundongos , Masculino , Animais , Camundongos Nus , Fibras na Dieta/farmacologia , Imunoglobulina ARESUMO
OBJECTIVES: To investigate alterations in depicted penis size by evaluating nude male paintings from the 15th to 21st centuries. MATERIALS AND METHODS: Nude-male paintings were identified from various art history websites and analysed to determine changes in penis size over time. Two observers organised the paintings according to the century in which they were created and made the calculations. Penile length to ear length (PtEL) or penile length to nose length (PtNL) were calculated to standardise the measurements using professional image analysis software. PtEL was first attempted for all paintings; if PtEL could not be ascertained, then nose length was used instead of the ear, as the nose length is defined as equal to ear length according to the golden ratio. Thus, PtNL was ensured and both ratios were then referred to using a common term: penis depiction ratio (PDR). Further analysis was performed by dividing the paintings into three groups according to the historical development of art: Renaissance Period (1400-1599; 15th-16th centuries), Baroque-Rococo and Impressionism Period (1600-1899; 17th-19th centuries) and Contemporary Art Period (1900-2020; 20th and 21st centuries). RESULTS: Of 232 identified paintings, 72 (31.1%) were excluded because they depicted images of adolescents or an erect penis. The PDR was found to differ significantly between paintings created in different centuries (P < 0.001). Subgroup analysis revealed that paintings from the 21st century demonstrated significantly higher PDRs than paintings from previous centuries (P = 0.001). CONCLUSIONS: In paintings depicting nude males, the size of the penis has gradually increased throughout the past seven centuries, and especially after the 20th century. This observation illustrates the changing sociocultural inputs into male body image and emphasises the need for improved understanding of the sociocultural factors associated with the perception of penis size in men.
Assuntos
Amiloidose Familiar , Pinturas , Humanos , Masculino , História do Século XIX , História do Século XX , Adolescente , Pênis , Pelve , Pinturas/históriaRESUMO
INTRODUCTION: Colorectal cancer (CRC) patients often develop liver metastasis. However, curative resection of liver metastasis is not always possible due to poor visualization of tumor margins. The present study reports the characterization of a humanized anti-carcinoembryonic antigen monoclonal antibody conjugated to a PEGylated near-infrared dye, that targets and brightly labels human CRC tumors in metastatic orthotopic mouse models. METHODS: The hT84.66-M5A (M5A) monoclonal antibody was conjugated with a polyethylene glycol (PEG) chain that incorporated a near infrared (NIR) IR800 dye to establish M5A-IR800 Sidewinder (M5A-IR800-SW). Nude mice with CRC orthotopic primary tumors and liver metastasis both developed from a human CRC cell line, were injected with M5A-IR800-SW and imaged with the Pearl Trilogy Imaging System. RESULTS: M5A-IR800-SW targeted and brightly labeled CRC tumors, both in primary-tumor and liver-metastasis models. M5A-IR800-SW at 75 µg exhibited highly-specific tumor labeling in a primary-tumor orthotopic model with a median tumor-to-background ratio of 9.77 and in a liver-metastasis orthotopic model with a median tumor-to-background ratio of 7.23 at 96 h. The precise labeling of the liver metastasis was due to lack of hepatic accumulation of M5A-IR800-SW in the liver. CONCLUSIONS: M5A-IR800-SW provided bright and targeted NIR images of human CRC in orthotopic primary-tumor and liver-metastasis mouse models. The results of the present study suggest the clinical potential of M5A-IR800-SW for fluorescence-guided surgery including metastasectomies for CRC. The lack of hepatic NIR signal is of critical importance to allow for precise labeling of liver tumors.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Camundongos Nus , Corantes Fluorescentes , Neoplasias Colorretais/patologia , Anticorpos Monoclonais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Polietilenoglicóis , Linhagem Celular TumoralRESUMO
BACKGROUND: Chemotherapy nonspecifically targets both tumor and healthy proliferating cells. Methionine deprivation using L-methioninase along with chemotherapy appears promising towards cancer management. The present study is an attempt to use a new combination of L-methioninase with Tamoxifen (TAM) to treat breast cancer in mice. METHODS AND RESULTS: L-Methioninase from Methylobacterium sp. was partially purified (SPMet's) by cold acetone precipitation and lyophilized. Its cytotoxicity effect, alone and in combination with Tamoxifen, was evaluated in vitro (MCF-7) cells and in vivo (athymic nude mice) conditions. SPMet's was found to inhibit the growth of MCF-7 cells with an IC50 value of 47.05 µg/ml, while the combination of SPMet's and TAM had an IC50 of 6.4 µg/ml. Athymic nude mice were grouped into: Group-I - Tumor control; Group-II - TAM; Group-III - SPMet's; Group-IV - SPMet's + TAM. Tumor growth inhibition (TGI) was maximum in Group-IV with 84.65% followed by Group-II with 65.12%. Hematological and Biochemical parameters in Group-II, III, and IV were restored to normal levels. Tumor histopathology showed increased apoptosis and necrosis in Group-IV. Caspases 3 & 8 gene upregulation was significantly higher in Group-IV than other treated groups, indicating higher efficacy of the combination approach. CONCLUSION: This is the first study report about a combination of SPMet's and TAM on in vivo breast cancer model, with significantly higher anticancer activity and without noticeable side effects. The findings of this study have several important implications for future clinical studies.
Assuntos
Neoplasias , Tamoxifeno , Camundongos , Animais , Camundongos Nus , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Liases de Carbono-Enxofre , Neoplasias/tratamento farmacológicoRESUMO
BACKGROUND: A biological injectable material, paste-type micronized acellular dermal matrix (ADM), has been proven effective in wound healing by filling defects through tissue replacement. This study aimed to compare the efficacy of paste-type micronized ADM on soft tissue augmentation with that of the conventional fillers in animal experiments. METHODS: Two distinct paste-type micronized ADMs, which were mixed with distilled water (mADM) and gelatin (mADM+GEL), respectively, were compared with conventional fillers, hyaluronic acid (HA) and polymethyl methacrylate (COL+PMMA). Thus, four different types of fillers were each injected into the dorsum of nude mice to compare the volume retention and biocompatibility. During the 8-week experimental period, ultrasound and computed tomography (CT) images were obtained for volumetric analysis. Histological evaluation was performed using hematoxylin and eosin and CD 31 staining. RESULTS: According to the CT images at week 8, the mADM and mADM+GEL showed a higher volume persistence rate of 113.54% and 51.12%, compared with 85.09% and 17.65% for HA and COL+PMMA, respectively. The 2-week interval ultrasound images revealed that the mADM showed a volume increase in width rather than in height, and an increase in height for HA did not vary much. Histological analysis showed marked fibrous invasion and neovascularization with the mADM and mADM+GEL compared to that of the conventional fillers. CONCLUSIONS: Paste-type micronized ADM showed soft tissue augmentation with similar effectiveness to that of conventional fillers. Therefore, paste-type micronized ADM has potential as an alternative material for a soft tissue filler in tissue replacement. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Assuntos
Derme Acelular , Preenchedores Dérmicos , Animais , Camundongos , Polimetil Metacrilato/farmacologia , Camundongos Nus , Cicatrização , Preenchedores Dérmicos/farmacologiaRESUMO
Propolis is a gelatinous substance processed by western worker bees from the resin of plant buds and mixed with the secretions of the maxillary glands and beeswax. Propolis has extensive biological activities and antitumor effects. There have been few reports about the antitumor effect of propolis against human cutaneous squamous cell carcinoma (CSCC) A431 cells and its potential mechanism. CCK-8 assays, label-free proteomics, RT-PCR, and a xenograft tumor model were employed to explore this possibility. The results showed that the inhibition rate of A431 cell proliferation by the ethanol extract of propolis (EEP) was dose-dependent, with an IC50 of 39.17 µg/mL. There were 193 differentially expressed proteins in the EEP group compared with the control group (p < 0.05), of which 103 proteins (53.37%) were upregulated, and 90 proteins (46.63%) were downregulated. The main three activated and suppressed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were extracellular matrix (ECM)-receptor interaction, amoebiasis, cell adhesion molecules (CAMs), nonalcoholic fatty liver disease (NAFLD), retrograde endocannabinoid signaling, and Alzheimer's disease. The tumor volume of the 100 mg/kg EEP group was significantly different from that of the control group (p < 0.05). These results provide a theoretical basis for the potential treatment of human CSCC A431 cell tumors using propolis.
Assuntos
Carcinoma de Células Escamosas , Própole , Neoplasias Cutâneas , Humanos , Linhagem Celular Tumoral , Própole/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Extratos Vegetais/farmacologia , Etanol/farmacologia , Proliferação de CélulasRESUMO
Stimulating the process of angiogenesis in treating ischemia-related diseases is an urgent task for modern medicine, which can be achieved through the use of different cell types. Umbilical cord blood (UCB) continues to be one of the attractive cell sources for transplantation. The goal of this study was to investigate the role and therapeutic potential of gene-engineered umbilical cord blood mononuclear cells (UCB-MC) as a forward-looking strategy for the activation of angiogenesis. Adenovirus constructs Ad-VEGF, Ad-FGF2, Ad-SDF1α, and Ad-EGFP were synthesized and used for cell modification. UCB-MCs were isolated from UCB and transduced with adenoviral vectors. As part of our in vitro experiments, we evaluated the efficiency of transfection, the expression of recombinant genes, and the secretome profile. Later, we applied an in vivo Matrigel plug assay to assess engineered UCB-MC's angiogenic potential. We conclude that hUCB-MCs can be efficiently modified simultaneously with several adenoviral vectors. Modified UCB-MCs overexpress recombinant genes and proteins. Genetic modification of cells with recombinant adenoviruses does not affect the profile of secreted pro- and anti-inflammatory cytokines, chemokines, and growth factors, except for an increase in the synthesis of recombinant proteins. hUCB-MCs genetically modified with therapeutic genes induced the formation of new vessels. An increase in the expression of endothelial cells marker (CD31) was revealed, which correlated with the data of visual examination and histological analysis. The present study demonstrates that gene-engineered UCB-MC can be used to stimulate angiogenesis and possibly treat cardiovascular disease and diabetic cardiomyopathy.
Assuntos
Células Endoteliais , Sangue Fetal , Humanos , Leucócitos MononuclearesRESUMO
Background: We hypothesized that the antitumor effects of asiaticoside on breast cancer are driven by its ability to decrease the expression of tumor inflammation-promoting genes and increase apoptotic signaling. In this study, we aimed to better understand the mechanisms of action of asiaticoside as a chemical modulator or as a chemopreventive agent in breast cancer. Methods: MCF-7 cells were cultured and treated with 0, 20, 40, and 80 µM asiaticoside for 48 h. Fluorometric caspase-9, apoptosis, and gene expression analyses were conducted. For the xenograft experiments, we divided nude mice into the following 5 groups (10 animals per group): group I, control mice; group II, untreated tumor-bearing nude mice; group III, tumor-bearing nude mice treated with asiaticoside at weeks 1-2 and 4-7 and injected with MCF-7 cells at week 3; group IV, tumor-bearing nude mice injected with MCF-7 cells at week 3 and treated with asiaticoside beginning at week 6; and group V, nude mice treated with asiaticoside, as a drug control. After treatment, weight measurements were performed weekly. Tumor growth was determined and analyzed using histology and DNA and RNA isolation. Results: In MCF-7 cells, we found that asiaticoside increased caspase-9 activity. In the xenograft experiment, we found that TNF-α and IL-6 expression decreased (p < 0.001) via the NF-κB pathway. Conclusion: Overall, our data suggest that asiaticoside produces promising effects on tumor growth, progression, and tumor-associated inflammation in MCF-7 cells as well as a nude mouse MCF-7 tumor xenograft model.
Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Camundongos , Animais , Feminino , Células MCF-7 , NF-kappa B/metabolismo , Camundongos Nus , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Xenoenxertos , Linhagem Celular Tumoral , Caspase 9/metabolismo , Neoplasias da Mama/tratamento farmacológico , ApoptoseRESUMO
This article aims to determine the prevalence of sending nude pictures/videos in the Norwegian population and investigates gender differences regarding consensual, unsolicited, and coerced experiences. Data were obtained from a probability-based web survey of 2181 men and 1967 women between 18 and 89 years old. The majority of participants expressed relatively accepting attitudes toward sending nude pictures/videos, and men expressed more positive attitudes than women. Twenty-nine percent of participants reported having lifetime experience with sending nude pictures/videos, and sending nude pictures/videos was more common in younger individuals than older individuals. More women than men claimed that they sent their most recent nude picture to a committed partner, and twice as many men than women had sent a nude picture to a stranger or a person they only had contact with on the Internet. In addition, more than twice as many women than men reported consensual sending nude pictures/videos, and more men than women sent unsolicited pictures/videos. Consensual sending nude pictures/videos was characterized by the presence of men and women within committed relationships. In Norway, sending nude pictures/videos seems to be a way of being sexual in the context of committed relationships.
RESUMO
Anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) are promising therapies for esophageal cancer. Zinc finger protein 64 (ZFP64) is precited as a transcriptional factor for PD-1 and CTLA-4 and presents high expression in esophagus cancer by bioinformatics analysis. The present study was designed to validate these results and to further explore the role of ZFP64 in esophagus cancer tumorigenesis. An orthotopic xenograft mouse model was established. Effects of ZFP64 on tumor growth and weight were assessed. Immunohistochemical staining was performed to reveal the protein expression of ZFP64, PD-1, and CTLA-4. Gain-of-function assays were performed to evaluate the influences of ZFP64 on cancer cell malignant phenotypes. The results revealed that ZFP64 transcriptionally activates PD-1 and CTLA-4 to increase their expression. ZFP64 plays an oncogenic role in esophageal cancer by promoting cancer cell proliferation, migration, invasion, and repressing apoptosis. ZFP64 also promotes esophageal cancer xenograft tumor growth in mice. In conclusion, ZFP64 increases PD-1 and CTLA-4 expression by binding to their promoters and facilitates esophageal cancer tumorigenesis, indicating ZFP64 protein transcription factor as a potential antidrug target in esophageal cancer.
Assuntos
Neoplasias Esofágicas , Receptor de Morte Celular Programada 1 , Animais , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Receptor de Morte Celular Programada 1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Lenvatinib is a multitargeted tyrosine kinase inhibitor that is being tested in combination with immune checkpoint inhibitors to treat advanced gastric cancer; however, little data exists regarding the efficacy of lenvatinib monotherapy. Patient-derived xenografts (PDX) are established by engrafting human tumors into immunodeficient mice. The generation of PDXs may be hampered by growth of lymphomas. In this study, we compared the use of mice with different degrees of immunodeficiency to establish PDXs from a diverse cohort of Western gastric cancer patients. We then tested the efficacy of lenvatinib in this system. METHODS: PDXs were established by implanting gastric cancer tissue into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) or Foxn1nu (nude) mice. Tumors from multiple passages from each PDX line were compared histologically and transcriptomically. PDX-bearing mice were randomized to receive the drug delivery vehicle or lenvatinib. After 21 days, the percent tumor volume change (%Δvtumor) was calculated. RESULTS: 23 PDX models were established from Black, non-Hispanic White, Hispanic, and Asian gastric cancer patients. The engraftment rate was 17% (23/139). Tumors implanted into NSG (16%; 18/115) and nude (21%; 5/24) mice had a similar engraftment rate. The rate of lymphoma formation in nude mice (0%; 0/24) was lower than in NSG mice (20%; 23/115; p < 0.05). PDXs derived using both strains maintained histologic and gene expression profiles across passages. Lenvatinib treatment (mean %Δvtumor: -33%) significantly reduced tumor growth as compared to vehicle treatment (mean %Δvtumor: 190%; p < 0.0001). CONCLUSIONS: Nude mice are a superior platform than NSG mice for generating PDXs from gastric cancer patients. Lenvatinib showed promising antitumor activity in PDXs established from a diverse Western patient population and warrants further investigation in gastric cancer.
Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Xenoenxertos , Camundongos Endogâmicos NOD , Camundongos Nus , Compostos de Fenilureia , Quinolinas , Neoplasias Gástricas/tratamento farmacológico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Oncolytic viruses (OVs), including oncolytic herpes simplex viruses (oHSVs), are promising therapeutics against cancer. Here, we report two ICP6-mutated HSVs (type I) generated by CRISPR/Cas9, rHSV1/∆RR (with ICP6 ribonucleotide reductase [RR] domain deleted) and rHSV1/∆ICP6 (with a complete deletion of ICP6), exhibiting potent antitumor efficacy against lung adenocarcinoma. Both the mutants showed strong cytotoxicity in vitro, comparable with the control viruses expressing intact ICP6, but in relatively lower titers. Moreover, these mutant viruses exhibited preferential killing ability against lung tumor cells rather than normal lung fibroblast cells. Further, unlike the control HSV-1 causing severe illness or death in the mouse model, the ICP6-mutated viruses did not induce significant pathogenicity but instead effectively reduced tumor burden in vivo and led to 100% survival of the animals, indicating notable antitumor activity and attenuated virulence. In addition, rHSV1/∆RR seemed to have even better antitumor efficacy than rHSV1/∆ICP6, albeit no statistical significance in inhibition of tumor volume. Histopathologically, rHSV1/∆RR induced massive neutrophil infiltration to the tumor microenvironment and consistently, triggered more antitumor immune and neutrophil chemotactic cytokines or higher expression levels of them (indicated by quantitative polymerase chain reaction and transcriptome analyses). These results demonstrate the anti-adenocarcinoma potential of the CRISPR/Cas9-engineered ICP6 mutant HSV1, especially the rHSV1/∆RR, which likely induces stronger innate antitumor immune response. Together, these findings may provide new valuable clues for further development of OV-based therapeutics against lung adenocarcinoma or other types of tumors.
Assuntos
Adenocarcinoma de Pulmão , Herpesvirus Humano 1 , Neoplasias Pulmonares , Ribonucleotídeo Redutases , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Herpesvirus Humano 1/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Ribonucleotídeo Redutases/genética , Microambiente TumoralRESUMO
BACKGROUND: Although uveal melanoma (UM) at the early stage is controllable to some extent, it inevitably ultimately leads to death due to its metastasis. At present, the difficulty is that there is no way to effectively tackle the metastasis. It is hypothesized that these will be treated by target molecules, but the recognized target molecule has not yet been found. In this study, the target molecule was explored through proteomics. METHODS: Transgenic enhanced green fluorescent protein (EGFP) inbred nude mice, which spontaneously display a tumor microenvironment (TME), were used as model animal carriers. The UM cell line 92.1 was inoculated into the brain ventricle stimulating metastatic growth of UM, and a graft re-cultured Next, the UM cell line 92.1-A was obtained through monoclonal amplification, and a differential proteomics database, between 92.1 and ectopic 92.1-A, was established. Finally, bioinformatics methodologies were adopted to optimize key regulatory proteins, and in vivo and in vitro functional verification and targeted drug screening were performed. RESULTS: Cells and tissues displaying green fluorescence in animal models were determined as TME characteristics provided by hosts. The data of various biological phenotypes detected proved that 92.1-A were more malignant than 92.1. Besides this malignancy, the key protein p62 (SQSTM1), selected from 5267 quantifiable differential proteomics databases, was a multifunctional autophagy linker protein, and its expression could be suppressed by chloroquine and dacarbazine. Inhibition of p62 could reduce the malignancy degree of 92.1-A. CONCLUSIONS: As the carriers of human UM orthotopic and ectopic xenotransplantation, transgenic EGFP inbred nude mice clearly display the characteristics of TME. In addition, the p62 protein optimized by the proteomics is the key protein that increases the malignancy of 92.1 cells, which therefore provides a basis for further exploration of target molecule therapy for refractory metastatic UM.
Assuntos
Dacarbazina , Neoplasias Uveais , Animais , Linhagem Celular Tumoral , Cloroquina/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Humanos , Melanoma , Camundongos , Camundongos Nus , Proteômica , Microambiente Tumoral , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/patologiaRESUMO
Lung and colorectal cancers are the most common types of cancer characterized by a poor prognosis and a high mortality rate. Mutations in the genes encoding components of the main intra- and extracellular signaling pathways, in particular the NOTCH1 gene (Notch1, a member of the Notch family of receptors), play one of the key roles in progression of these malignancies. Notch signaling is involved in maintaining homeostasis of the intestinal epithelium and structural and functional lung elements. Therefore, it is not surprising that the constitutive activity and hyperactivity of Notch signaling due to somatic mutations in genes coding for the products directly involved into its activation, could lead to the progression of these cancer types. The aim of our study was to investigate how the NOTCH1 downregulation via RNA interference (RNAi) affects the phenotype, characteristics, and Notch-dependent signaling of human A549 lung and HCT116 colorectal carcinoma cells. Several small harpin RNAs (shRNAs) were selected using the bioinformatic analysis and tested for their ability to suppress the NOTCH1 expression. The most efficient one was used to produce the A549 and HCT116 cells with NOTCH1 knockdown. The obtained cell lines demonstrated decreased proliferation rates, reduced colony-forming capacity under adhesive conditions, and decreased migration activity in a Boyden chamber. The NOTCH1 knockdown also significantly decreased expression of some Notch signaling target genes potentially involved in the acquisition and maintenance of more invasive and malignant cell phenotype. In vivo experiments in immunodeficient athymic female Balb/c nu/nu mice confirmed the results obtained in vitro: the NOTCH1 inhibition decreased the growth rates of the subcutaneous xenografts formed by A549 and HCT116 tumor cells. Therefore, downregulation of the gene encoding the Notch1 receptor potentially reduces malignant characteristics of human lung and colorectal carcinoma cells.