RESUMO
Peatlands are recognized as crucial greenhouse gas sources and sinks and have been extensively studied. Their emissions exhibit high spatial heterogeneity when measured on site using flux chambers. However, the mechanism by which this spatial variability behaves on a very fine scale remains unclear. This study investigates the fine-scale spatial variability of greenhouse gas emissions from a subantarctic Sphagnum peatland bog. Using a recently developed skirt chamber, methane emissions and ecosystem respiration (as carbon dioxide) were measured at a submeter scale resolution, at five specific 3 × 3 m plots, which were examined across the site throughout a single campaign during the Austral summer season. The results indicated that methane fluxes were significantly less homogeneously distributed compared with ecosystem respiration. Furthermore, we established that the spatial variation scale, i.e., the minimum spatial domain over which notable changes in methane emissions and ecosystem respiration occur, was <0.56 m2. Factors such as ground height relative to the water table and vegetation coverage were analyzed. It was observed that Tetroncium magellanicum exhibited a notable correlation with higher methane fluxes, likely because of the aerenchymatous nature of this species, facilitating gas transport. This study advances understanding of gas exchange patterns in peatlands but also emphasizes the need for further efforts for characterizing spatial dynamics at a very fine scale for precise greenhouse gas budget assessment.
Assuntos
Gases de Efeito Estufa , Metano , Áreas Alagadas , Gases de Efeito Estufa/análise , Metano/análise , Dióxido de Carbono/análise , Solo/química , Ecossistema , Sphagnopsida , Monitoramento AmbientalRESUMO
Organelle size varies with normal and abnormal cell function. Thus, size-based particle separation techniques are key to assessing the properties of organelle subpopulations differing in size. Recently, insulator-based dielectrophoresis (iDEP) has gained significant interest as a technique to manipulate sub-micrometer-sized particles enabling the assessment of organelle subpopulations. Based on iDEP, we recently reported a ratchet device that successfully demonstrated size-based particle fractionation in combination with continuous flow sample injection. Here, we used a numerical model to optimize the performance with flow rates a factor of three higher than previously and increased the channel volume to improve throughput. We evaluated the amplitude and duration of applied low-frequency DC-biased AC potentials improving separation efficiency. A separation efficiency of nearly 0.99 was achieved with the optimization of key parameters-improved from 0.80 in previous studies (Ortiz et al. Electrophoresis, 2022;43;1283-1296)-demonstrating that fine-tuning the periodical driving forces initiating the ratchet migration under continuous flow conditions can significantly improve the fractionation of organelles of different sizes.
Assuntos
Técnicas Analíticas Microfluídicas , Organelas , Eletroforese/métodosRESUMO
Ammonium (NH4+) enrichment of riverbank filtration (RBF) systems is gaining popularity. However, most previous research has concentrated on NO3- removal efficiencies, while the mechanisms of NH4+ enrichment remain unknown. A nitrogen biogeochemical process model was developed for the quantitative analysis of NH4+ enrichment in the Kaladian well field in northwest Songyuan City, NE China. Data from laboratory experiments and in-situ monitoring were used to determine initial values and calibrate the thermodynamic/kinetic parameters representing nitrogen (N) biogeochemical reactions. (1) The NO3- from river was subjected to denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) within 10-14 m of the shore, whereas the NH4+ in groundwater was caused by DNRA, organic nitrogen mineralization (MIN), and mixing with laterally recharged high NH4+ groundwater. (2) DNF and DNRA were regulated by hydrodynamic processes, with the ranges of these processes being more significant in the wet season due to a higher hydraulic gradient. MIN occurred widely throughout the water flow path, with temperature primarily controlling the rates of the three reactions. (3) DNRA activity was relatively higher in the wet season when the water temperature was higher within 10-14 m of the shore. In the wet season, DNRA contributed 25%-30% to NO3- reduction, which was higher than in the dry season (5%-10%). DNRA contributed at least 40% and 15% to NH4+ enrichment in the wet and dry seasons, respectively. (4). Organic N in media gradually released NH4+ into groundwater via MIN and desorption across the entire flow path, with contributions to NH4+ enrichment reaching 75% and 85%, respectively, in the wet and dry seasons.
Assuntos
Compostos de Amônio , Nitrogênio , Desnitrificação , Nitratos/análise , Óxidos de Nitrogênio , Compostos Orgânicos , ÁguaRESUMO
The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms.
Assuntos
Micro-Ondas , Acidente Vascular Cerebral , Humanos , Máquina de Vetores de Suporte , Encéfalo , Acidente Vascular Cerebral/diagnóstico , AlgoritmosRESUMO
Combined remediation technologies are increasingly being considered to uranium contaminated groundwater, such as the joint utilize of permeable reactive bio-barrier (Bio-PRB) and electrokinetic remediation (EKR). While the assessment of uranium plume evolution in the combined remediation system (CRS) have often been impeded by insufficient understanding of multi-physical field superposition. Therefore, advanced knowledge in multi-physical field coupling in groundwater flow will be crucial to the practical application of these techniques. A two-dimensional multi-physical field coupling model was constructed for predicting the uranium degradation in CRS. The study demonstrates that the coupling model is able to predict the uranium plume evolution and rapidly evaluate the performance of CRS components. The results show that field electric direction and flow field strength are the key factors that affect the retardation and remediation performance of CRS. The reverse electric field direction significantly affected the contact reaction time of uranium in the system. The uranium residence time in the reverse electric field was 3.8 d, which was significantly greater than the original electric field (2.0 d). Depending on the voltage, the reverse electric field direction was 16%-36% more efficient than the original direction. The strength of the flow field was about two orders of magnitude higher than that of the electric field, so the groundwater flow rate dominated remediation efficiency. Reducing the flow rate by 1/2 could improve the performance of the system by approximately 66%. In addition, the coupling model can be utilized to design standard CRS for real site of uranium contaminated groundwater. To meet the optimal performance, the direction of the electric field should be set opposite to the flow field. This work has successfully used a coupling model to predict uranium contaminant-plume evolution in CRS and estimate the performance of each component.
RESUMO
This study investigated surface spreading and underground dam recharge methods to replenish groundwater in Turkey's Egri Creek Sub-basin of the Kucuk Menderes River Basin. A three-dimensional numerical model was employed for this purpose. Field and lab data are provided to the model for realistic simulations. Pumping test results were used to determine the aquifer parameters. The laboratory works involved sieve analysis, permeability tests, and porosity and water content prediction. The numerical model's boundary conditions were determined from the geological and hydrogeological characteristics of the study area. Initial conditions were expressed regarding water content and pressure head in the vadose zone. The numerical model was satisfactorily validated by simulating water levels in three different pumping wells in the study area. Seven different scenarios, each having a different pool size, were investigated for the surface spreading recharge method. The results showed that a pool size of 30 × 30 m with a 6-m depth basin was the most optimal choice, raising the groundwater level to about 29.3 m. On the other hand, it was found that an underground dam could raise the levels by an average of 9.5 m, which might not be significant to warrant the construction.
Assuntos
Monitoramento Ambiental , Água Subterrânea , Turquia , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Poços de Água , RiosRESUMO
Material dissolution is a critical attribute of many products in a wide variety of industries. The idealized view of dissolution through established prediction tools should be reconsidered because the number of new substances with low aqueous solubility is increasing. Due to this, a fundamental understanding of the dissolution process is desired. The aim of this study was to develop a tool to predict crystal dissolution performance based on experimentally measurable physical parameters. A numerical simulation, called the phase-field method, was used to simultaneously solve the time evolution of the phase and concentration fields of dissolving particles. This approach applies to diffusion-limited as well as surface reaction-limited systems. The numerical results were compared to analytical solutions, and the influence of particle shape and interparticle proximity on the dissolution process was numerically investigated. Dissolution behaviors of two different substances were modeled. A diffusion-limited model compound, xylitol, with a high aqueous solubility and a surface reaction-limited model compound, griseofulvin, with a low aqueous solubility were chosen. The results of the simulations demonstrated that phase-field modeling is a powerful approach for predicting the dissolution behaviors of pure crystalline substances.
Assuntos
Griseofulvina , Água , Solubilidade , Difusão , Griseofulvina/química , Simulação por Computador , Água/químicaRESUMO
Semivolatile/intermediate-volatility organic compounds (S/IVOCs) from mobile sources are essential SOA contributors. However, few studies have comprehensively evaluated the SOA contributions of S/IVOCs by simultaneously comparing different parameterization schemes. This study used three SOA schemes in the CMAQ model with a measurement-based emission inventory to quantify the mobile source S/IVOC-induced SOA (MS-SI-SOA) for 2018 in China. Among different SOA schemes, SOA predicted by the 2D-VBS scheme was in the best agreement with observations, but there were still large deviations in a few regions. Three SOA schemes showed the peak value of annual average MS-SI-SOA was up to 0.6 ± 0.3 µg/m3. High concentrations of MS-SI-SOA were detected in autumn, while the notable relative contribution of MS-SI-SOA to total SOA was predicted in the coastal areas in summer, with a regional average contribution up to 20 ± 10% in Shanghai. MS-SI-SOA concentrations varied by up to 2 times among three SOA schemes, mainly due to the discrepancy in SOA precursor emissions and chemical reactions, suggesting that the differences between SOA schemes should also be considered in modeling studies. These findings identify the hotspot areas and periods for MS-SI-SOA, highlighting the importance of S/IVOC emission control in the future upgrading of emission standards.
Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Emissões de Veículos/análise , Aerossóis/análise , China , Estações do Ano , Poluentes Atmosféricos/análiseRESUMO
In the recent years, the coastal aquifer of Jijel plain (North Algeria) located on the south of the Mediterranean Sea was utilized for cities growth and agricultural development of the region. Consequently, overexploitation and seawater intrusion were identified as major risks to the groundwater resource. In this work, a new approach integrating groundwater vulnerability method and numerical model for predicting the actual and future seawater is proposed. The groundwater vulnerability assessment has been performed by applying the GALDIT method using GIS and the MODFLOW model was used to simulate the actual and future groundwater level of the aquifer over the period 2020-2050. Three scenarios were simulated under water demand and climate conditions (drought, recharge) to obtain the changes in the groundwater level variation. The results of the GALDIT model application to the actual conditions (year 2020) showed that the high class of groundwater vulnerability is located in the coastal fringe and the terminal stretches of wadis where the seawater intrusion limit is located at a distance range between 840 and 1420 m from the shoreline. However, the results for predicting future groundwater vulnerability showed that the scenario which proposed the artificial recharge basins, although predicting a worrying situation compared to the actual condition, has the best figure of the groundwater vulnerability assessment and seawater intrusion despite the other two scenarios. In this case the limit in the year 2050 is located between distances of 850-1640 m from the shoreline with a forward speed of seawater intrusion of 1-8 m/year, compared to the reference year 2020. This showed that groundwater level variation and recharge were the key factors in controlling groundwater vulnerability to seawater intrusion. The presented new approach can be used to mapping the actual and future groundwater vulnerability assessment to seawater intrusion and groundwater resources management in any coastal areas worldwide.
Assuntos
Monitoramento Ambiental , Água Subterrânea , Monitoramento Ambiental/métodos , Previsões , Modelos Teóricos , Água do MarRESUMO
Coastal wetlands are the most valuable ecosystems on the earth but facing severe degradation and losses owing to climate change and anthropogenic activities. Many ecological engineering projects (EEP) have been conducted to mitigate the degradation of coastal wetlands. However, the geomorphological impacts of EEP on coastal wetlands have not been well documented. In this study, a method employed a process-based hydrodynamic model and remote sensing (RS) was developed to evaluate the impacts of EEP on the geomorphological change of a prototype Ramsar site. Results demonstrated that RS can improve the quality of bathymetry data for the numerical model with a decrease of RMSE of bathymetry data from 0.52 m to 0.3 m. RS data also showed good capacity in trend detection of geomorphological change spatially. Results showed the Chongming Dongtan wetland experienced erosion with an annual rate of -0.035 m/yr from 2013 to 2016 after the implementation of EEP. The deposition rate changed significantly in the area within 200 m of the EEP. It is found that the EEP modified the composition of vegetation, sediment transportation, as well as substrate stability, affecting the geomorphological change of coastal wetlands. The study suggested that the EEP is a direct and effective way to restore the coastal habitats for waterbirds from moderate anthropogenic disturbance. However, the modification of the coastal wetland ecosystem by EEP will potentially increase the vulnerability to global climate change. Therefore, Future studies are needed to further evaluate the advantages and disadvantages of EEP and identify a more sustainable approach for coastal management.
Assuntos
Ecossistema , Áreas Alagadas , Efeitos Antropogênicos , Conservação dos Recursos Naturais , Tecnologia de Sensoriamento RemotoRESUMO
Cold spray has recently emerged as a promising new technology for various coating, additive manufacturing, and on-site repair needs. One key challenge underlying cold spray is the proper simulation of the deposition process, for which numerous numerical studies have been carried out, but often fail to consider the interfacial adhesion. In this study, a new numerical approach on the base of peridynamics (PD) was developed to incorporate interfacial interactions as a part of the constitutive model to capture deformation, bonding, and rebound of impacting particles in one unified framework. Two models were proposed to characterize the adhesive contacts, i.e., a long-range Lenard-Johns type potential and a force-stretch relation of the interface directly derived from fracture properties of the bulk material. Using copper as the sample material, the deformation behaviors simulated by the PD-based approach were found to compare well with those from benchmark finite element method simulations. It was further demonstrated that this PD-based approach allows flexibility to realize different deposition scenarios, such as particle-substrate bonding and separation, by modulating adhesion energies. The approach provides a new numerical framework for more realistic cold spray impact simulations.
RESUMO
The negative-step stilling basin is an efficient and safe energy dissipator for high-head, large-unit discharge high-dam projects. However, studies of the effects of the negative step on the hydraulic performance of a high-dam stilling basin have not been conclusive. In the present study, a 2D RANS-VOF numerical model was developed to simulate the flow field of a negative-step stilling basin. The numerical model was validated with a physical model and then used to simulate and test the performance of the negative-step stilling basin with different step heights and incident angles. The results showed that the flow pattern, the free-surface profile, the velocity profile, the characteristic lengths are strongly influenced by the step geometry. Increasing the height of the step will increase the relative flow depth and the reattachment length in the basin, but reduce the bottom velocity and the roller length. The incident angle has no significant influence on the flow pattern of the negative-step stilling basin, and increasing the incident angle of the step will reduce the bottom velocity and the reattachment length. Both the step height and the incident angle have no significant influence on the energy dissipation efficiency because of the high submergence conditions in this study.
RESUMO
The two-filter method enables the continuous measurement of airborne Rn-222 via simultaneously sampling and counting. However, the slow time response of the two-filter detector and the overlapping counting data derived from the intervallic data acquisition make the interpretation of measurement results complicated. A valid data analysis to exactly match the series of counting data with the corresponding radon concentrations is desired. In this work, the continuous sampling and counting processes of the two-filter method is depicted numerically and the calculation of radon concentration from the raw counting data is given with detailed formulas. The numerical model is used to quantitatively investigate the influences of several key factors, including the volume of the radon delay chamber (5-10 000 l), the flow rate of air sampling (2.5-1000 l min-1) and the interval time of data acquisition (5-120 min), on the measurement sensitivity and accuracy, which provides an approach for the optimization of the design and measurement settings of a specific two-filter detector in relation to these aspects.
Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Radônio/análiseRESUMO
The purpose of the study is to show that two simple models that take into account only the irreversibility due to temperature difference in the heat exchangers and imperfect regeneration are able to indicate refrigerating machine behavior. In the present paper, the finite physical dimensions thermodynamics (FPDT) method and 0-D modeling using the Schmidt model with imperfect regeneration were applied in the study of a ß type Stirling refrigeration machine.The 0-D modeling is improved by including the irreversibility caused by imperfect regeneration and the finite temperature difference between the gas and the heat exchangers wall. A flowchart of the Stirling refrigerator exergy balance is presented to show the internal and external irreversibilities. It is found that the irreversibility at the regenerator level is more important than that at the heat exchangers level. The energies exchanged by the working gas are expressed according to the practical parameters, necessary for the engineer during the entire project. The results of the two thermodynamic models are presented in comparison with the experimental results, which leads to validation of the proposed FPDT model for the functional and constructive parameters of the studied refrigerating machine.
RESUMO
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced ventricular arrhythmia associated with rhythm disturbance and impaired sinoatrial node cell (SANC) automaticity (pauses). Mutations associated with dysfunction of Ca2+-related mechanisms have been shown to be present in CPVT. These dysfunctions include impaired Ca2+ release from the ryanodine receptor (i.e., RyR2R4496C mutation) or binding to calsequestrin 2 (CASQ2). In SANC, Ca2+ signaling directly and indirectly mediates pacemaker function. We address here the following research questions: (i) what coupled-clock mechanisms and pathways mediate pacemaker mutations associated with CPVT in basal and in response to ß-adrenergic stimulation? (ii) Can different mechanisms lead to the same CPVT-related pacemaker pauses? (iii) Can the mutation-induced deteriorations in SANC function be reversed by drug intervention or gene manipulation? We used a numerical model of mice SANC that includes membrane and intracellular mechanisms and their interconnected signaling pathways. In the basal state of RyR2R4496C SANC, the model predicted that the Na+-Ca2+ exchanger current (INCX) and T-type Ca2+ current (ICaT) mediate between changes in Ca2+ signaling and SANC dysfunction. Under ß-adrenergic stimulation, changes in cAMP-PKA signaling and the sodium currents (INa), in addition to INCX and ICaT, mediate between changes in Ca2+ signaling and SANC automaticity pauses. Under basal conditions in Casq2-/-, the same mechanisms drove changes in Ca2+ signaling and subsequent pacemaker dysfunction. However, SANC automaticity pauses in response to ß-AR stimulation were mediated by ICaT and INa. Taken together, distinct mechanisms can lead to CPVT-associated SANC automaticity pauses. In addition, we predict that specifically increasing SANC cAMP-PKA activity by either a pharmacological agent (IBMX, a phosphodiesterase (PDE) inhibitor), gene manipulation (overexpression of adenylyl cyclase 1/8) or direct manipulation of the SERCA phosphorylation target through changes in gene expression, compensate for the impairment in SANC automaticity. These findings suggest new insights for understanding CPVT and its therapeutic approach.
Assuntos
Predisposição Genética para Doença , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Mutação , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/fisiopatologia , Algoritmos , Alelos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Calsequestrina , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Genótipo , Cadeias de Markov , Camundongos , Camundongos Knockout , Modelos Biológicos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismoRESUMO
Although photoactivated localization microscopy offers the potential to interrogate protein interactions in the physiological environment of a cell, uncertainties in the detection efficiency of photoactivatable proteins lead to complications with data interpretation. Here, we present a numerical model that provides probabilities to detect neighboring molecules dependent on their oligomerization status, density, detection efficiency, and radius, and can be used to assess oligomeric states or detection efficiencies of two molecular species. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Assuntos
Microscopia , ProteínasRESUMO
Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with a physical-biogeochemical model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan but also with continued recent loads (mean loads 2012-2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid-21st century but then decreased, giving almost no net change by the end of the 21st century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic-pelagic coupling might be weaker in a warmer and less eutrophic sea.
RESUMO
Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after â¼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 µeeq/g iron and 18 ± 15 µeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.
Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Etano , Etilenos , Tricloroetileno/análise , Poluentes Químicos da Água/análiseRESUMO
How to reduce the risk of physical clogging is the most significant challenge during managed aquifer recharge (MAR). The prediction of occurrence and development of physical clogging has received increasing attention. In this study, chlorinated secondary wastewater (SW) was recharged into a laboratory column filled with quartz sands. The results showed that the continuous injection of reclaimed water caused a significant reduction in hydraulic conductivity by about 86% in porous media, during the 50-h injection process. The reduction was attributed to physical clogging resulting from the deposition of suspended particles with a flocculent and reticular structure, significantly increasing the surface area and the effective volume of the particle deposits. A numerical model was established based on the mass balance equations for liquid and suspended particles, coupling the particle transport-deposition model and the expressions describing the relationships between the porosity, hydraulic conductivity (K), and the concentration of deposited particles; the model was used to obtain a quantitative description of the temporal and spatial distribution of physical clogging. The bulk factor and the attachment and detachment coefficients were calibrated simultaneously. The model results provided an improved understanding of the influence degree of the three parameters on the physical clogging process. The sensitivity analysis results showed that the bulk factor had the largest sensitivity among the three parameters. In addition, a significant correlation was observed between the simulated data and the experimental data (R2 > 0.90, p < 0.01). The proposed numerical model provides a meaningful guidance tool for assessing and predicting the risk of physical clogging induced by low-density floc particles during artificial recharge with reclaimed water at a large-scale site.
Assuntos
Água Subterrânea , Água , Porosidade , Águas Residuárias , Movimentos da ÁguaRESUMO
BACKGROUND AND OBJECTIVES: Radiofrequency (RF)-induced ablation can be carried out inside ducts and vessels by simultaneously dragging a bipolar catheter while applying RF power. Our objective was to characterize the relation between pullback speed, impedance progress, and temperature distribution. STUDY DESIGN/MATERIALS AND METHODS: We built a numerical model including a bipolar catheter, which is dragged inside a duct while RF power is applied between a pair of electrodes. The model solved a triple-coupled electrical, thermal, and mechanical problem. Lesions were assessed by an Arrhenius model. The numerical model's thermal and electrical characteristics were chosen to obtain the same initial impedance value as in the experiments: 560 Ω at 16°C (sample temperature). RESULTS: The catheter initially remained still, and the impedance was falling during the application of power. When pullback speed was too slow (<0.4 mm/s) impedance continued to drop when the catheter began to move, creating deep lesions, overheating and impedance roll-off, while at the faster speed (0.4-1.0 mm/s) impedance first rose slightly and then reached a plateau. There was a strong inverse relation between pullback speed and lesion depth. The hottest point was always around the second electrode, creating a kind of hot wake. CONCLUSIONS: These findings confirm the close relationship between pullback speed and impedance progress, and suggest that the latter factor could be used to guide the procedure and achieve effective and safe ablations along the inner path of a duct or vessel. Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.