Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Nutr ; 43: 1-23, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37253680

RESUMO

An interview with James M. Ntambi, professor of biochemistry and the Katherine Berns Van Donk Steenbock Professor in Nutrition, College of Agricultural and Life Sciences, at the University of Wisconsin-Madison, took place via Zoom in April 2022. He was interviewed by Patrick J. Stover, director of the Institute for Advancing Health through Agriculture and professor of nutrition and biochemistry and biophysics at Texas A&M University. Dr. James Ntambi is a true pioneer in the field of nutritional biochemistry. He was among the very first to discover and elucidate the role that diet and nutrients play in regulating metabolism through changes in the expression of metabolic genes, focusing on the de novo lipogenesis pathways. As an African immigrant from Uganda, his love of science and his life experiences in African communities suffering from severe malnutrition molded his scientific interests at the interface of biochemistry and nutrition. Throughout his career, he has been an academic role model, a groundbreaking nutrition scientist, and an educator. His commitment to experiential learning through the many study-abroad classes he has hosted in Uganda has provided invaluable context for American students in nutrition. Dr. Ntambi's passion for education and scientific discovery is his legacy, and the field of nutrition has benefited enormously from his unique perspectives and contributions to science that are defined by his scientific curiosity, his generosity to his students and colleagues, and his life experiences. The following is an edited transcript.


Assuntos
Agricultura , Bioquímica , Ciências da Nutrição , Humanos , Agricultura/história , Metabolismo/genética , Ciências da Nutrição/história , Estado Nutricional , Uganda , Estados Unidos , Wisconsin , População Africana , Desnutrição/genética , Desnutrição/metabolismo , Bioquímica/história
2.
Crit Rev Food Sci Nutr ; 63(4): 449-456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35708095

RESUMO

This review will examine the role of 5'-adenosine monophosphate-activated protein kinase (AMPK) in the treatment of obesity, medical nutrition and chronic diseases, and its relationship with nutrition. In the literature, the number of studies examining the direct relationship of AMPK with nutrition is negligible. For this reason, information on the subject has been compiled from all the studies that can be accessed by searching the terms AMPK and disease, AMPK and health, AMPK and exercise, AMPK and nutrition. It can be stated that AMPK is inhibited in many pathological conditions such as inflammation, diabetes, aging and cancer, and AMPK activation has positive effects in many diseases such as insulin resistance, diabetes, obesity, cancer and Alzheimer's. When the relationship between nutrition and AMPK is examined, it is seen that food intake inhibits AMPK, but especially high-carbohydrate and fatty diets are more effective at this point. In addition, high fructose corn sirup and long chain saturated fatty acids increased by consumption of industrial foods and frequent meals appear to be an inactivator for AMPK. For AMPK activation in medical nutrition therapy, it is recommended to use methods such as evening fasting and intermittent fasting, taking into account the human circadian rhythm.


Assuntos
Diabetes Mellitus , Neoplasias , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Obesidade , Doença Crônica , Neoplasias/metabolismo
3.
Curr Oncol Rep ; 18(7): 43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27215437

RESUMO

Nutrigenetics and nutrigenomics, as well as diet and exercise, play an important role in the development and treatment of obesity and its comorbidities. If an individual's susceptibility to becoming obese and their responsiveness to weight loss interventions are to be understood, then it needs to be addressed at a molecular and metabolic level, including genetic interaction. This review proposes a three-pillar approach to more fully comprehend the complexity of diet-gene interactions in obesity. Peroxisomal proliferating-activated receptor gamma (PPARG) and mitochondrial uncoupling protein-1 (UCP-1) are explored in detail. Illustrating how an understanding of nutritional biochemistry, nutrigenomics, and nutrigenetics may be the key to understanding differences observed in the obese phenotype that vary both within and across populations.


Assuntos
Peso Corporal/genética , Dieta , Nutrigenômica/métodos , Obesidade/genética , Obesidade/prevenção & controle , Humanos , Fenômenos Fisiológicos da Nutrição
4.
Animal ; 18(7): 101204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897106

RESUMO

We now live in an era where metabolic data are increasingly accessible and available. Analysis of this data can be done using novel techniques (e.g., machine learning and artificial intelligence) but this does not alleviate scientists to use "human intelligence". The objective of this paper is to combine the information of a large database of biochemical reactions with a method and tool to make nutritional biochemistry more accessible to nutritionists. A script was developed to extract information from a database with more than 16 000 biochemical reactions so that it can be used for "biochemical bookkeeping". A system of more than 300 meta-reactions (i.e., the outcome reaction of a series of connected individual reactions) was constructed covering a wide range of metabolic pathways for macro- and micronutrients. Meta-reactions were constructed by identifying metabolic nodes, which are inputs or outputs of a metabolic system or that serve as connection points between meta-reactions. Complete metabolic pathways can be constructed by combining and balancing the meta-reactions using a simple Excel tool. To illustrate the use of meta-reactions and the tool in the teaching of nutritional biochemistry, examples are given to illustrate how much ATP can be synthesized from glucose, either directly or indirectly (i.e., via storage and mobilization or via transfer of intermediate metabolites between tissues and generations). To illustrate how meta-reactions and the tool can be used in research, nutrient balance data of the mammary gland of a dairy cow were used to construct a plausible pathway of nutrient metabolism of the whole mammary gland. The balance data included 34 metabolites taken up or exported by the mammary gland and 39 meta-reactions were used to construct a metabolic pathway that accounted for the uptake and output of metabolites. The results highlighted the importance of the synthesis of proline from arginine and the concomitant synthesis of urea by the mammary gland. It also raised the question of whether the availability of metabolic pathways or glucose uptake would be the more limiting factor for the synthesis of NADPH required for fatty acid synthesis. The availability of an open database with biochemical reactions, the concept of meta-reactions, and the provision of a tool allow users to construct metabolic pathways, which helps acquiring a more comprehensive and integrated view of metabolism and may raise issues that may be difficult to identify otherwise.


Assuntos
Redes e Vias Metabólicas , Animais , Feminino , Bovinos/fisiologia , Bases de Dados Factuais , Ciências da Nutrição Animal , Bioquímica , Fenômenos Fisiológicos da Nutrição Animal
5.
J Clin Med ; 8(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109092

RESUMO

This study aims to investigate dietary and nutritional biochemistry profiles of attention-deficit/hyperactivity disorder (ADHD) and to explore their potential relationship by path analysis. We enrolled 216 children with ADHD and 216 age-, height- and gender-matched controls from 31 elementary schools in Taiwan. Dietary intake of the participants was assessed using a food frequency questionnaire (FFQ). Fasting blood samples were collected to determine the serum levels of multiple nutritional markers. Moreover, we employed a structural equation model (SEM) to link diet, nutritional markers and ADHD. Compared to healthy control, ADHD children had significantly lower serum levels of vitamin B12, folate, vitamin B6, ferritin concentration, and monounsaturated fatty acids (MUFA), but higher levels of serum saturated fatty acids (SFA), n-6/n-3 fatty acid ratio, and inorganic phosphorous concentration. Children with ADHD had more intake of nutrient-poor foods such as high sugar and high fat foods, and had less intake of vegetable, fruit, protein-rich foods than their counterpart. SEM analysis showed that the poor nutritional biochemistry profiles linked the association between unhealthy dietary patterns and ADHD. In conclusion, an unhealthy dietary pattern may be a predecessor of the poor nutritional biochemistry status, and managing diet and nutrition conditions should be considered to improve ADHD symptoms in children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA