Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220063, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37150197

RESUMO

Estimates of ocean [Formula: see text] uptake from global ocean biogeochemistry models and [Formula: see text]-based data products differ substantially, especially in high latitudes and in the trend of the [Formula: see text] uptake since 2000. Here, we assess the effect of data sparsity on two [Formula: see text]-based estimates by subsampling output from a global ocean biogeochemistry model. The estimates of the ocean [Formula: see text] uptake are improved from a sampling scheme that mimics present-day sampling to an ideal sampling scheme with 1000 evenly distributed sites. In particular, insufficient sampling has given rise to strong biases in the trend of the ocean carbon sink in the [Formula: see text] products. The overestimation of the [Formula: see text] flux trend by 20-35% globally and 50-130% in the Southern Ocean with the present-day sampling is reduced to less than [Formula: see text] with the ideal sampling scheme. A substantial overestimation of the decadal variability of the Southern Ocean carbon sink occurs in one product and appears related to a skewed data distribution in [Formula: see text] space. With the ideal sampling, the bias in the mean [Formula: see text] flux is reduced from 9-12% to 2-9% globally and from 14-26% to 5-17% in the Southern Ocean. On top of that, discrepancies of about [Formula: see text] (15%) persist due to uncertainties in the gas-exchange calculation. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Glob Chang Biol ; 28(4): 1212-1221, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34921472

RESUMO

Plankton drive a major sink of carbon across the global oceans. Dead plankton, their faeces and the faeces of plankton feeders, form a huge rain of carbon sinking to the seabed and deep ocean, reducing atmospheric CO2 levels and thus helping to regulate the climate. Any change in plankton communities, ecosystems or habitats will perturb this carbon sink, potentially increasing atmospheric CO2 . Fishing is a major cause of ocean ecosystem disturbance affecting all trophic levels including plankton, but its potential impact on the carbon sink is unknown. As both fisheries and the carbon sink depend on plankton, there is spatial overlap of these fundamental ecosystem services. Here, we provide the first global maps of this spatial overlap. Using an upper quartile analysis, we show that 21% of the total upper ocean carbon sink (export) and 39% of fishing effort globally are concentrated in zones of intensive overlap, representing 9% of the ocean surface area. This overlap is particularly evident in the Northeast Atlantic suggesting this region should be prioritized in terms of research and conservation measures to preserve the high levels of sinking carbon. Small pelagic fish dominate catches here and globally, and their exploitation could reduce important faecal pellet carbon sinks and cause trophic cascades affecting plankton communities. There is an urgent need to recognize that, alongside climate change, fishing might be a critical influence on the ability of the ocean to sequester atmospheric CO2 . Improved understanding of this influence, and how it will change with the climate, will be important for realizing a sustainable balance of the twin needs for productive fisheries and strong carbon sinks.


Assuntos
Ecossistema , Pesqueiros , Animais , Sequestro de Carbono , Mudança Climática , Oceanos e Mares
3.
Glob Chang Biol ; 28(5): 1786-1797, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888995

RESUMO

The global ocean has absorbed approximately 30% of anthropogenic CO2  since the beginning of the industrial revolution. However, the spatiotemporal evolution of this important global carbon sink varies substantially on all timescales and has not yet been well evaluated. Here, based on a reconstructed observation-based product of surface ocean pCO2 and air-sea CO2  flux (the MPI-SOMFFN method), we investigated seasonal to decadal spatiotemporal variations of the ocean CO2  sink during the past three decades using an adaptive data analysis method. Two predominant variations are modulated annual cycles and decadal fluctuations, which account for approximately 46% and 25% of all extracted components, respectively. Although the whole summer to non-summer seasonal difference pattern is determined by the Southern Ocean, the non-summer CO2  sink at mid-latitudes in both hemispheres shows an increasing trend (a total increase of approximately 1.0 PgC during the period 1982-2019), while it is relatively stable in summer. On decadal timescales for the global ocean carbon sink, unlike the weakening decade (1990-1999) and the reinvigoration decade (2000-2009) in which the Southern Ocean plays the dominant role, the reinforcement decade (2010-2019) is mainly the result from the weakening source effect in the equatorial Pacific Ocean. Our results suggest that except for the Southern Ocean's role in the global ocean carbon sink, the strengthening non-summer's sink at mid-latitudes in both hemispheres and the decadal or longer timescales of equatorial Pacific Ocean dynamics should be fully considered in understanding the oceanic carbon cycle on a global scale.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Ciclo do Carbono , Dióxido de Carbono/análise , Oceanos e Mares , Estações do Ano
4.
Environ Sci Technol ; 56(10): 6584-6595, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35507754

RESUMO

The role of ocean carbon sinks in global climate change mitigation and carbon neutrality is still affected by lack of research. Aiming at overcoming the present limitations, a comprehensive and holistic framework and accounting method of ocean carbon sink evaluation are proposed in this study, which consider both carbon sink types and their characteristic carbon storage cycle timescales. The results show that (1) China's total ocean carbon sink is 69.83-106.46 Tg C/year, among which the mariculture, coastal wetlands, and offshore carbon sinks are 2.27-4.06, 2.86-5.85, and 64.70-96.55 Tg C/year, respectively; (2) ocean-based solutions such as coastal protection and restoration, mariculture development, ocean alkalization, ocean fertilization, and marine bioenergy with carbon capture and storage have substantial mitigation potential, but further investigation is required before large-scale deployment; (3) although China's ocean carbon sinks only counterbalanced 3.27-4.99% of its fossil fuel emissions, their tremendous enhancing potential and specific advantages cannot be ignored, and enhancing measures must be taken according to regional characteristics; (4) some uncertainties and limitations still exist, and problems such as double counting, carbon sink offset, and so forth need to be further considered. In a word, this study provides a basis for the development of ocean-based solutions on closing climate mitigation gaps.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Carbono/análise , China , Ecossistema , Oceanos e Mares
5.
Proc Natl Acad Sci U S A ; 116(24): 11646-11651, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138699

RESUMO

Measurements show large decadal variability in the rate of [Formula: see text] accumulation in the atmosphere that is not driven by [Formula: see text] emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of [Formula: see text] due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic [Formula: see text] uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric [Formula: see text] accumulation. Data-based estimates of the ocean carbon sink from [Formula: see text] mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean [Formula: see text] sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean [Formula: see text] uptake, but also demonstrate that the sensitivity of ocean [Formula: see text] uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial [Formula: see text] sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial [Formula: see text] uptake to climate variability and lead to improved climate projections and decadal climate predictions.

6.
Geophys Res Lett ; 48(22): e2021GL095396, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34924639

RESUMO

We assess the detectability of COVID-like emissions reductions in global atmospheric CO2 concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon-concentration feedbacks obscure the detectability of short-term emission reductions in atmospheric CO2. COVID-driven changes in the simulated, column-averaged dry air mole fractions of CO2 are eclipsed by large internal variability. Carbon-concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions-driven signal in the atmosphere carbon reservoir and further confound signal detection.

7.
Environ Sci Pollut Res Int ; 30(28): 72690-72709, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37178298

RESUMO

Low-carbon development requires joint efforts in terms of "carbon reduction" and "carbon sink increase." This study thus proposes a DICE-DSGE model for exploring the environmental and economic benefits of ocean carbon sinks and provides policy suggestions for marine economic development and carbon emission policy choices. The results are as follows: (1) while the economic benefits of heterogeneous technological shocks are apparent, the environmental benefits of carbon tax and carbon quota shocks are significant; (2) increasing the efficiency of ocean carbon sinks improves the environmental benefits of technological shocks as well as the output benefits of emission reduction tools, while increasing the share of marine output can improve both the economic benefits of technological shocks and the environmental benefits of emission reduction tools; and (3) ocean output proportion has the most considerable positive effect on social welfare, followed by marine total factor productivity (TFP). The correlation effect of ocean carbon sink efficiency is negative.


Assuntos
Sequestro de Carbono , Desenvolvimento Econômico , Carbono , Dióxido de Carbono/análise , Oceanos e Mares , China
8.
Sci Total Environ ; 867: 161589, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640885

RESUMO

Carbon dioxide (CO2) emitted by human activities not only brings about a serious greenhouse effect but also accelerates global climate change. This has resulted in extreme climate hazards that can obstruct human development in the near future. Hence, there is an urgent need to achieve carbon neutrality by increasing negative emissions. The ocean plays a vital role in absorbing and sequestering CO2. Current research on marine carbon storage and sink enhancement mainly focuses on biological carbon sequestration using carbon sinks (macroalgae, shellfish, and fisheries). However, seawater inorganic carbon accounts for more than 95 % of the total carbon in marine carbon storage. Increasing total alkalinity at a constant dissolved inorganic carbon shifts the balance of existing seawater carbonate system and prompts a greater absorption of atmospheric CO2, thereby increasing the ocean's "carbon sink". This review explores two main mechanisms (i.e., enhanced weathering and ocean alkalinization) and materials (e.g., silicate rocks, metal oxides, and metal hydroxides) that regulate marine chemical carbon sink (MCCS). This work also compares MCCS with other terrestrial and marine carbon sinks and discusses the implementation of MCCS, including the following aspects: chemical reaction rate, cost, and possible ecological and environmental impacts.

9.
Mar Pollut Bull ; 186: 114471, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563601

RESUMO

Rates of seawater acidification and rise of partial pressure of CO2 (pCO2) at ocean margins are highly uncertain. In this study, nine years of time-series data sampled during 2010-2018 along Kuroshio Current near the East China Sea (ECS) were investigated. We found trends of surface seawater pCO2 at 3.70 ± 0.57 µatm year-1 and pH at -0.0033 ± 0.0009 unityear-1, both of which were significantly greater than those reported from other oceanic time series. Mechanistic analysis showed that seawater warming caused rapid rates of pCO2 increase and acidification under sustained DIC increase. The faster pCO2 growth relative to the atmosphere resulted in the CO2 uptake through the air-sea exchange declining by ~50 % (~-0.8 to -0.4 mol C m-2 year-1) over the study period. Our results imply that rapidly warming boundary currents could potentially present an elevated pCO2 trend, leading to a gradual reduction and eventual loss of oceanic CO2 uptake under climate change.


Assuntos
Dióxido de Carbono , Acidificação dos Oceanos , Dióxido de Carbono/análise , Oceanos e Mares , Água do Mar , China , Concentração de Íons de Hidrogênio
10.
Ann Rev Mar Sci ; 11: 159-186, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30212259

RESUMO

The CO2 uptake by the Southern Ocean (<35°S) varies substantially on all timescales and is a major determinant of the variations of the global ocean carbon sink. Particularly strong are the decadal changes characterized by a weakening period of the Southern Ocean carbon sink in the 1990s and a rebound after 2000. The weakening in the 1990s resulted primarily from a southward shift of the westerlies that enhanced the upwelling and outgassing of respired (i.e., natural) CO2. The concurrent reduction in the storage rate of anthropogenic CO2 in the mode and intermediate waters south of 35°S suggests that this shift also decreased the uptake of anthropogenic CO2. The rebound and the subsequent strong, decade-long reinvigoration of the carbon sink appear to have been driven by cooling in the Pacific Ocean, enhanced stratification in the Atlantic and Indian Ocean sectors, and a reduced overturning. Current-generation ocean models generally do not reproduce these variations and are poorly skilled at making decadal predictions in this region.


Assuntos
Dióxido de Carbono/metabolismo , Modelos Teóricos , Oceanos e Mares , Água do Mar/química , Dióxido de Carbono/química , Sequestro de Carbono , Movimentos da Água
11.
Ann Rev Mar Sci ; 9: 125-150, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27620831

RESUMO

Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.


Assuntos
Sequestro de Carbono , El Niño Oscilação Sul , Oceanos e Mares , Atmosfera , Dióxido de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA