Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38906847

RESUMO

AIM: Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS: We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/ß-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS: In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Temperatura Alta , Recombinases Rec A , Esporos Bacterianos , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Bacillus subtilis/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Calefação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
J Dairy Sci ; 107(1): 155-168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709020

RESUMO

Ohmic heating may improve bioactive compounds and processing, ensuring food safety of beverages, liquid and pasty food, or liquid with solid pieces. Due to those traits, this study conducted a comparison between ohmic heating technology and conventional heating (CH), with a focus on assessing the impact of both methods on functional compounds (such as angiotensin-converting enzyme inhibition, α-amylase and α-glucosidase inhibition, and antioxidant activity) in both fresh and thawed raw sheep milk, which had been frozen for up to 3 mo. Different ohmic heating conditions were applied and compared to CH (3.33-8.33 V/cm vs. CH [73°C/15 s]). A total of 18 peptides with some functional activities were identified by MALDI-TOF mass spectrometry analysis. Ohmic heating samples presented the highest activities related to health, followed by CH and raw milk samples; antioxidant activity range was from 0.11% to 0.71%, antihypertensive activity ranged from 0.20% to 0.72%, and antidiabetic activity ranged from 0.21% to 0.79%. Of 51 volatile compounds detected, some were degraded by freezing, storing, and heating the sheep milk. This study showed for the first time that ohmic heating processing improved sheep milk bioactive peptides and preserved volatile compounds.


Assuntos
Antioxidantes , Leite , Animais , Ovinos , Leite/química , Antioxidantes/análise , Calefação , Bebidas/análise , Peptídeos/análise , Temperatura Alta
3.
J Food Sci Technol ; 61(6): 1188-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562592

RESUMO

A lab-scale continuous ohmic heating (COH) system was developed, and its performance was studied for pineapple juice heating as a model sample. The effect of independent parameters [°Brix/Acid (unstandardized, 18, 22, 26) and flow rate (80-120 mL/min) of juice and electric field strength (EFS: 25-45 V/cm)] were analysed for responses viz. come-up-time, heating rate (HR) and system performance coefficient (SPC). The full factorial experimental design was used for this study. The results showed that with an increase in °Brix/Acid, the % acidity and electrical conductivity decreased significantly (p < 0.05); thus, the come-up-time to reach 90 °C increased significantly. The HR was significantly (p < 0.05) influenced by °Brix/Acid and EFS but less so by flow rates at higher EFS. The SPC was more than 0.90 and reduced significantly (p < 0.05) with an increase in °Brix/Acid and flow rate. The HR was modeled using a feed-forward back-propagation artificial neural network (ANN) with the best topology of 3, 5, and 1 neurons in the input (independent), hidden, and output (response) layers, respectively. The model performed efficiently, which is evident from the high R2 (0.998) and low RMSE (1.255). Thus, the COH, with its high efficiency and HR, can effectively be used to process fruit juice. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05961-x.

4.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688747

RESUMO

Escherichia coli O157: H7 is a representative foodborne pathogen that causes haemorrhagic colitis, bloody diarrhea, and fatal haemolytic uraemic syndrome. Previously, only conventional heat treatment was used to pasteurised food; however, this method decreases food quality, including colour change, denatures proteins, and causes lipid oxidation. Therefore, emerging technologies to inactivate pathogens in food that affect food quality minimally have been researched and developed. This review aims to compile research since 2018 and briefly describe the inactivation mechanisms of emerging technologies such as microwave, radio frequency, ohmic heating, superheated steam, ionising radiation (gamma irradiation, electron beam, and X-rays), high pressure, ultraviolet light, pulsed light, ultrasound, gas treatment, plasma, and combination treatments. Pulsed electric field and electrolysed water were excluded because few research papers were published after 2018. In addition, the shortcomings of emerging technologies in the control of E. coli O157: H7 and the directions for emerging technology research are presented. Taking advantage of emerging technologies with many benefits will significantly improve food safety.


Assuntos
Escherichia coli O157 , Humanos , Escherichia coli O157/efeitos da radiação , Radiação Ionizante , Inocuidade dos Alimentos , Temperatura Alta , Diarreia , Microbiologia de Alimentos , Contagem de Colônia Microbiana
5.
J Sci Food Agric ; 103(6): 2773-2785, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36598243

RESUMO

BACKGROUND: Nixtamalized flour snacks such as tortilla chips are widely consumed across the world, but they are nutritionally poor and contribute to obesity and other non-communicable diseases. The production of healthy versions of such snacks, by incorporating vegetables and improving the quality of the flours used in their formulation, could help address these nutritional challenges. This study compared the fortification of baked tortilla chips with vegetable leaf powders (kale and wild amaranth at 0%, 4%, 8%, and 16% w/w) and using two types of nixtamalized flour: traditional (TNF) and with ohmic heating (OHF). RESULTS: Overall, the use of OHF increased 1.88 times the fibre in enriched and non-enriched snacks with respect to TNF, but the latter had 1.85 times more protein. Addition of 16% of vegetable powders increased protein (kale = 1.4-fold; amaranth = 1.3-fold) and dietary fibre (kale = 1.52-fold; amaranth = 1.7-fold). Amaranth enrichment improved total phenolic content (TPC) and total flavonoid content (TFC) of chips at least 1.2 and 1.63 times, respectively. OHF chips also had higher bound TPC than TNF ones, regardless of vegetable addition. Combinations of OHF with 16% amaranth produced chips 1.74-fold higher in antioxidant capacity than non-enriched ones, due to increased content of phenolics such as ferulic acid. CONCLUSION: This work showed that tortilla chips made using nixtamalized flour produced with assisted ohmic heating, alone or in combination with wild amaranth leaf powder, could be used in the production of healthy maize snacks to enhance their prospective antioxidant activity and nutritional value. © 2023 Society of Chemical Industry.


Assuntos
Amaranthus , Brassicaceae , Verduras/metabolismo , Farinha/análise , Manipulação de Alimentos/métodos , Lanches , Calefação , Estudos Prospectivos , Suplementos Nutricionais , Antioxidantes/análise , Fenóis/análise , Brassicaceae/metabolismo , Amaranthus/química
6.
Entropy (Basel) ; 25(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37190446

RESUMO

Entropy generation in peristaltic transport of hybrid nanofluid possessing temperature-dependent thermal conductivity through a two-dimensional vertical channel is studied in this paper. The hybrid nanofluid consists of multi-walled carbon nanotubes mixed with zinc oxide suspended in engine oil. Flow is affected by a uniform external magnetic field, hence generating Lorentz force, Hall and heating effects. Given the vertical orientation of the channel, the analysis accounts for mixed convection. To study heat transfer in the current flow configuration, the model considers phenomena such as viscous dissipation, heat generation or absorption, and thermal radiation. The mathematical modeling process employs the lubrication approach and Galilean transformation for enhanced accuracy. The slip condition for the velocity and convective conditions for the temperature are considered at the boundaries. The study analyzes entropy generation using the Homotopy Analysis Method (HAM) and includes convergence curves for HAM solutions. Results are presented using graphs and bar charts. The analysis shows that higher Brinkman and thermal radiation parameters result in higher temperatures, while higher thermal conductivity parameters lead to reduced entropy generation and temperature profile. Additionally, higher Hall parameter values decrease entropy generation, while an increased Hartman number improves entropy generation.

7.
J Food Sci Technol ; 60(1): 24-34, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618035

RESUMO

Considering the global need for waste valorization and enhancing resource efficiency, this study investigated the possibility of recovering amino acids from underutilized chicken heads and legs as poultry by-products. In this sense, a new combined technique was developed based on ohmic heating (OH) and subcritical water (SCW), i.e., OHSCW. Besides, the effects of OH at different electric field strengths (5.71, 7.14, and 8.57 V/cm) and times (15, 30, and 45 min) were compared with the control treatment (SCW equipped with conventional heating, without OH) at a temperature of 140 °C. The results showed that the come-up time using OHSCW, at electric field strengths of 7.14 and 8.57 V/cm, was less than the control method by 17 and 75%, respectively. The lowest specific energy consumption was 403.68 kJ/kg which was 59.22% less than the control method. The highest energy efficiency was 93.88% at the electric field strength of 8.57 V/cm which was superior to that of the control treatment, i.e., 47.13%. The amounts of total amino acids recovered by OHSCW, at an electric field strength of 8.57 V/cm, were higher than the control method by 70.48%. OHSCW at an electric field strength of 5.71 V/cm yielded the maximum recovery efficiency of amino acids (79.40%) while recovery efficiency in control treatment was 15.48%. Besides, the results of Amino acid Analyzer (AAA) showed that the recovered amino acids include asparagine, serine, glutamine, glycine, threonine, histidine, cysteine, alanine, aspartic, tryptophan, arginine, tyrosine, valine, methionine, isoleucine, leucine, and phenylalanine. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05556-4.

8.
Food Microbiol ; 97: 103737, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33653516

RESUMO

The effect of ohmic heating (OH) (50, 55, and 60 °C, 6 V/cm) on the inactivation kinetics (Weibull model) and morphological changes (scanning electron microscopy and flow cytometry) of Salmonella spp. in infant formula (IF) was evaluated. In addition, thermal load indicators (hydroxymethylfurfural and whey protein nitrogen index, HMF, and WPNI) and bioactive compounds (DPPH, total phenolics, ACE, α-amylase, and α-glucosidase inhibitory activities) were also studied. OH presented a more intense inactivation rate than conventional heating, resulting in a reduction of about 5 log CFU per mL at 60 °C in only 2.91 min, being also noted a greater cell membrane deformation, higher formation of bioactive compounds, and lower values for the thermal load parameters. Overall, OH contributed to retaining the nutritional value and improve food safety in IF processing.


Assuntos
Conservação de Alimentos/métodos , Fórmulas Infantis/química , Fórmulas Infantis/microbiologia , Salmonella/crescimento & desenvolvimento , Microbiologia de Alimentos , Conservação de Alimentos/instrumentação , Furaldeído/análogos & derivados , Furaldeído/química , Temperatura Alta , Salmonella/química , Salmonella/fisiologia , Proteínas do Soro do Leite/química
9.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202440

RESUMO

Usually, wine-making by-products are discarded, presenting a significant environmental impact. However, they can be used as a source of bioactive compounds. Moreover, consumers' increasing demand for naturally nutritious and healthy products requires new formulations and food product improvement, together with sustainable, environmentally friendly extraction methods. Thus, this work aimed to compare ohmic heating (OH) with conventional methodology (CONV), using food-grade solvents, mainly water, compared to standard methanol extraction of anthocyanins. No significant differences were found between the CONV and OH for total phenolic compounds, which were 2.84 ± 0.037 and 3.28 ± 0.46 mg/g DW gallic acid equivalent, respectively. The same tendency was found for antioxidant capacity, where CONV and OH presented values of 2.02 ± 0.007 g/100 g and 2.34 ± 0.066 g/100 g ascorbic acid equivalent, respectively. The major anthocyanins identified were malvidin-3-O-acetylglucoside, delphinidin-3-O-glucoside, petunidine-3-O-glucoside, cyanidin-3-O-glucoside, and peonidine-3-O-glucoside. These extracts displayed antimicrobial potential against microorganisms such as Yersinia enterocolitica, Pseudomonas aeruginosa, Salmonella enteritidis, methicillin-sensitive Staphylococcus aureus, a methicillin-resistant Staph. aureus (MRSA), and Bacillus cereus. In conclusion, OH provides similar recovery yields with reduced treatment times, less energy consumption, and no need for organic solvents (green extraction routes). Thus, OH combined with water and citric acid allows a safe anthocyanin extraction from grape by-products, thus avoiding the use of toxic solvents such as methanol, and with high biological potential, including antimicrobial and antioxidant activity.


Assuntos
Antocianinas , Anti-Infecciosos , Antioxidantes , Bactérias/crescimento & desenvolvimento , Temperatura Alta , Vitis/química , Antocianinas/química , Antocianinas/isolamento & purificação , Antocianinas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Solventes/química , Água/química
10.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32385086

RESUMO

The aim of this research was to investigate the efficacy of the duty ratio and applied voltage in the inactivation of pathogens in soybean curd by pulsed ohmic heating (POH). The heating rate of soybean curd increased rapidly as the applied voltage increased, although the duty ratio did not affect the temperature profile. We supported this result by verifying that electrical conductivity increased with the applied voltage. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in soybean curd were significantly (P < 0.05) inactivated by more than 1 log unit at 80 Vrms (root mean square voltage). To elucidate the mechanism underlying these results, the membrane potential of the pathogens was examined using DiBAC4(3) [bis-(1,3-dibutylbarbituric acid)trimethine oxonol] on the basis of a previous study showing that the electric field generated by ohmic heating affected the membrane potential of cells. The values of DiBAC4(3) accumulation increased under increasing applied voltage, and they were significantly (P < 0.05) higher at 80 Vrms, while the duty ratio had no effect. In addition, morphological analysis via transmission electron microscopy showed that electroporation and expulsion of intracellular materials were predominant at 80 Vrms Moreover, electrode corrosion was overcome by the POH technique, and the textural and color properties of soybean curd were preserved. These results substantiate the idea that the applied voltage has a profound effect on the microbial inactivation of POH as a consequence of not only the thermal effect, but also the nonthermal effect, of the electric field, whereas the duty ratio does not have such an effect.IMPORTANCE High-water-activity food products, such as soybean curd, are vulnerable to microbial contamination, which causes fatal foodborne diseases and food spoilage. Inactivating microorganisms inside food is difficult because the transfer of thermal energy is slower inside than it is outside the food. POH is an adequate sterilization technique because of its rapid and uniform heating without causing electrode corrosion. To elucidate the electrical factors associated with POH performance in the inactivation of pathogens, the effects of the applied voltage and duty ratio on POH were investigated. In this study, we verified that a high applied voltage (80 Vrms) at a duty ratio of 0.1 caused thermal and nonthermal effects on pathogens that led to an approximately 4-log-unit reduction in a significantly short time. Therefore, the results of this research corroborate database predictions of the inactivation efficiency of POH based on pathogen control strategy modeling.


Assuntos
Escherichia coli O157/fisiologia , Glycine max/fisiologia , Temperatura Alta , Listeria monocytogenes/fisiologia , Potenciais da Membrana , Viabilidade Microbiana , Salmonella typhimurium/fisiologia , Fermentação , Calefação/métodos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA