Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374707

RESUMO

Electrowetting Display (EWD) is a new reflective display with an outstanding performance of color video playback. However, some problems still exist and affect its performance. For instance, oil backflow, oil splitting, and charge trapping phenomena may occur during the driving process of EWDs, which would decrease its stability of multi-level grayscales. Therefore, an efficient driving waveform was proposed to solve these disadvantages. It consisted of a driving stage and a stabilizing stage. First, an exponential function waveform was used in the driving stage for driving the EWDs quickly. Then, an alternating current (AC) pulse signal waveform was used in the stabilizing stage to release the trapped positive charges of the insulating layer to improve display stability. A set of four level grayscale driving waveforms were designed by using the proposed method, and it was used in comparative experiments. The experiments showed that the proposed driving waveform could mitigate oil backflow and splitting effects. Compared to a traditional driving waveform, the luminance stability was increased by 8.9%, 5.9%, 10.9%, and 11.6% for the four level grayscales after 12 s, respectively.

2.
Micromachines (Basel) ; 13(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744562

RESUMO

Electrowetting display (EWD) is a new type of paper-like reflective display based on colored oil, which has gradually become one of the most potential electronic papers with low power consumption, fast response, and full color. However, oil backflow can occur in EWDs, which makes it difficult to maintain a stable aperture ratio. In order to improve the stability of the aperture ratio of EWDs, a new driving waveform was proposed based on analyzing the phenomenon of oil backflow. The driving waveform was composed of a shrinking stage and a driving stage. Firstly, a threshold voltage of oil splitting was calculated by analyzing the luminance curve of EWDs, which were driven by different direct current (DC) voltages. Then, an exponential function waveform, which increased from the threshold voltage, was applied to suppress oil splitting. Finally, a periodic signal combined with a reset signal with a DC signal was applied during the driving stage to maintain a stable aperture ratio display. Experimental results showed that the charge trapping effect could be effectively prevented by the proposed driving waveform. Compared with an exponential function waveform, the average luminance value was increased by 28.29%, and the grayscale stability was increased by 13.76%. Compared to a linear function waveform, the aperture ratio was increased by 10.44% and the response time was reduced by 20.27%.

3.
Micromachines (Basel) ; 12(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925329

RESUMO

The electrowetting display (EWD) is a kind of reflective paper-like display. Flicker and grayscale distortion are caused by oil backflow, which is one of the important factors restricting the wide application of EWDs. The charge embedding caused by the electric field force in the dielectric layer is the cause of oil backflow. To suppress oil backflow, a separated reset waveform based on the study of oil movement is proposed in this paper. The driving waveform is divided into two parts: a reset waveform and a grayscale waveform. The reset waveform generated by a reset circuit can be used to output various voltages. The grayscale waveform is set as a traditional PWM waveform. The reset waveform is composed of a charge-releasing stage and oil-moving back stage. Two phases are contained in the charge releasing stage. The overdriving voltage is used during the first phase to reverse the voltage of all pixels. The trapped charges can then be released from the dielectric layer during the second phase. A higher voltage is used during the oil-moving back stage to drive the oil faster in the pixel. By comparing the experimental data, the oil backflow time is extended 761 times by the reset waveform. The four grayscales can be maintained by the reset waveform after driving for 300 s.

4.
Micromachines (Basel) ; 11(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698463

RESUMO

A pixel in an electrowetting display (EWD) can be viewed as a confined water/oil two-phase microfluidic system that can be manipulated by applying an electric field. The phenomenon of charge trapping in the protective dielectric and conductivity of the oil phase reduce the effective electric field that is required to keep the three-phase contact line (TCL) in place. This probably leads to an oil-backflow effect which deteriorates the electro-optical performance of EWD devices. In order to investigate charge trapping and conduction effects on the device electro-optical response, an EWD device was studied, which was fabricated with a black oil, aiming for a high-contrast ratio and color-filter display. For comparison, we also prepared a device containing a purple oil, which had a lower electrical conductivity. As anticipated, the black-oil device showed faster backflow than the purple-oil device. A simple model was proposed to explain the role of oil conductivity in the backflow effect. In addition, the rebound and reopening effects were also observed after the voltage was switched to zero. The above observations were strongly dependent on polarity. By combining observations of the polarity dependence of the oil conductivity and assuming that negative charges trap more strongly in the dielectric than positive charges, our experimental results on rebound and reopening can be explained. In the AC optical response, the pixel closing speed decreased in time for intermediate frequencies. This is likely related to the phenomenon of charge trapping. It was also found that the periodic driving method could not suppress the backflow effect when the driving frequency was above ~10 kHz. Our findings confirm the significance of the above charge-related effects of EWD devices, which need to be investigated further for better understanding in order to properly design/use materials and driving schemes to suppress them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA