Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612763

RESUMO

Idiopathic intellectual disability (IID) encompasses the cases of intellectual disability (ID) without a known cause and represents approximately 50% of all cases. Neural progenitor cells (NPCs) from the olfactory neuroepithelium (NEO) contain the same information as the cells found in the brain, but they are more accessible. Some miRNAs have been identified and associated with ID of known etiology. However, in idiopathic ID, the effect of miRNAs is poorly understood. The aim of this study was to determine the miRNAs regulating the expression of mRNAs that may be involved in development of IID. Expression profiles were obtained using NPC-NEO cells from IID patients and healthy controls by microarray. A total of 796 miRNAs and 28,869 mRNAs were analyzed. Several miRNAs were overexpressed in the IID patients compared to controls. miR-25 had the greatest expression. In silico analysis showed that ROBO2 was the target for miR-25, with the highest specificity and being the most down-regulated. In vitro assay showed an increase of miR-25 expression induced a decrease in ROBO2 expression. In neurodevelopment, ROBO2 plays a crucial role in episodic learning and memory, so its down-regulation, caused by miR-25, could have a fundamental role in the intellectual disability that, until now, has been considered idiopathic.


Assuntos
Deficiência Intelectual , MicroRNAs , Humanos , Deficiência Intelectual/genética , MicroRNAs/genética , Encéfalo , Regulação para Baixo/genética , Aprendizagem , RNA Mensageiro , Proteínas Roundabout , Receptores Imunológicos/genética
2.
Neurobiol Dis ; 176: 105942, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473591

RESUMO

Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that has emerged as a key regulator of neurotransmission in complex cognitive processes. Its expression is altered in treated schizophrenia patients, and cannabinoids modulate CDK5 levels in the brain of rodents. However, the role of this kinase, and its interaction with cannabis use in first-episode psychosis (FEP) patients is still not known. Hence, we studied the expression changes of CDK5 and its signaling partner, postsynaptic density protein 95 (PSD95) in olfactory neuroepithelial (ON) cells of FEP patients with (FEP/c) and without (FEP/nc) prior cannabis use, and in a dual-hit mouse model of psychosis. In this model, adolescent mice were exposed to the cannabinoid receptor 1 agonist (CB1R) WIN-55,212-2 (WIN: 1 mg/kg) during 21 days, and to the N-methyl-d-aspartate receptor (NMDAR) blocker phencyclidine (PCP: 10 mg/kg) during 10 days. FEP/c showed less social functioning deficits, lower CDK5 and higher PSD95 levels than FEP/nc. These changes correlated with social skills, but not cognitive deficits. Consistently, exposure of ON cells from FEP/nc patients to WIN in vitro reduced CDK5 levels. Convergent results were obtained in mice, where PCP by itself induced more sociability deficits, and PSD95/CDK5 alterations in the prefrontal cortex and hippocampus than exposure to PCP-WIN. In addition, central blockade of CDK5 activity with roscovitine in PCP-treated mice restored both sociability impairments and PSD95 levels. We provide translational evidence that increased CDK5 could be an early indicator of psychosis associated with social deficits, and that this biomarker is modulated by prior cannabis use.


Assuntos
Canabinoides , Transtornos Psicóticos , Esquizofrenia , Camundongos , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Fenciclidina/farmacologia , Agonistas de Receptores de Canabinoides , Proteína 4 Homóloga a Disks-Large
3.
Mol Cell Biochem ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440120

RESUMO

The persistence of fetal cells in the mother (fetal microchimerism (FMc)) has been described in maternal tissues essential to the newborn. FMc is associated with several diseases that start or worsen in pregnancy or postpartum. This exploratory study reports-for the first time-the presence of FMc in the olfactory neuroepithelium (ON) of both healthy and depressed women with male offspring. However, depressed women had fewer microchimeric cells (digital PCR). The existence of FMc in the ON could facilitate mother-child bonding. These findings open new pathways to study FMc in the ON, female depression, and mother-child bonding.

4.
Curr Allergy Asthma Rep ; 23(3): 153-164, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696016

RESUMO

PURPOSE OF REVIEW: Olfactory dysfunction contributes to the psychopathology of mental illness. In this review, we describe the neurobiology of olfaction, and the most common olfactory alterations in several mental illnesses. We also highlight the role, hitherto underestimated, that the olfactory pathways play in the regulation of higher brain functions and its involvement in the pathophysiology of psychiatric disorders, as well as the effect of inflammation on neurogenesis as a possible mechanism involved in olfactory dysfunction in psychiatric conditions. RECENT FINDINGS: The olfactory deficits present in anxiety, depression, schizophrenia or bipolar disorder consist of specific alterations of different components of the sense of smell, mainly the identification of odours, as well as the qualifications of their hedonic valence (pleasant or unpleasant). Epidemiological findings have shown that both environmental factors, such as air pollutants, and inflammatory disease of the upper respiratory tract, can contribute to an increased risk of mental illness, at least in part, due to peripheral inflammatory mechanisms of the olfactory system. In this review, we describe the neurobiology of olfaction, and the most common olfactory function alterations in several psychiatric conditions and its role as a useful symptom for the differential diagnosis. We also highlight the effect of inflammation on neurogenesis as a possible mechanism involved in olfactory dysfunction in these psychiatric conditions.


Assuntos
Transtornos Mentais , Transtornos do Olfato , Humanos , Olfato/fisiologia , Emoções/fisiologia , Inflamação
5.
Neurol Sci ; 44(3): 919-930, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36394661

RESUMO

Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.


Assuntos
Síndrome de Down , Transtornos do Olfato , Humanos , Projetos Piloto , Transtornos do Olfato/etiologia , Odorantes , Olfato/fisiologia
6.
Alzheimers Dement ; 19(11): 5209-5231, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283269

RESUMO

Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Consenso , Disfunção Cognitiva/patologia , Encéfalo/patologia
7.
Cell Tissue Res ; 378(2): 175-193, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31168693

RESUMO

The effects of caloric restriction (CR) on cell dynamics and gene expression in the mouse olfactory neuroepithelium are evaluated. Eight-week-old male C57BL/6 mice were fed either control pellets (104 kcal/week) or CR pellets (67 kcal/week). The cytoarchitecture of the olfactory neuroepithelium in the uninjured condition and its regeneration after injury by an olfactotoxic chemical, methimazole, were compared between mice fed with the control and CR diets. In the uninjured condition, there were significantly fewer olfactory marker protein (OMP)-positive olfactory receptor neurons and Ki67-positive proliferating basal cells at 3 months in the CR group than in the control group. The number of Ki67-positive basal cells increased after methimazole-induced mucosal injury in both the control and the CR groups, but the increase was less robust in the CR group. The recovery of the neuroepithelium at 2 months after methimazole administration was less complete in the CR group than in the control group. These histological changes were region-specific. The decrease in the OMP-positive neurons was prominent in the anterior region of the olfactory mucosa. Gene expression analysis using a DNA microarray and quantitative real-time polymerase chain reaction demonstrated that the expression levels of two inflammatory cytokines, interleukin-6 and chemokine ligand 1, were elevated in the olfactory mucosa of the CR group compared with the control group. These findings suggest that CR may be disadvantageous to the maintenance of the olfactory neuroepithelium, especially when it is injured.


Assuntos
Restrição Calórica/efeitos adversos , Antígeno Ki-67/metabolismo , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/lesões , Neurônios Receptores Olfatórios/fisiologia , Animais , Proliferação de Células , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia
8.
Eur Arch Otorhinolaryngol ; 274(6): 2461-2468, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28251320

RESUMO

To detect ultra-structural changes of Rabbit's olfactory neuro-epithelium using scanning electron microscope after exposure to cigarette smoking. Sixty six rabbits (Pathogen free New Zealand white rabbits weighing 1-1.5 kg included in the study were randomly assigned into one of three groups: control group did not expose to cigarette smoking, study group 1 was exposed to cigarette smoking for 3 months and study group 2 was exposed to cigarette smoking 3 months and then stopped for 2 months. Olfactory neuro-epithelium from all rabbits were dissected and examined under Philips XL-30 scanning electron microscope. Changes that were found in the rabbits of study group 1 in comparison to control group were loss of microvilli of sustentacular cells (p = 0.016) and decreases in distribution of specialized cilia of olfactory receptor cells (p = 0.046). Also respiratory metaplasia was detected. These changes were reversible in study group 2. Cigarette smoking causes ultra-structural changes in olfactory neuro-epithelium which may explain why smell was affected in cigarette smokers. Most of these changes were reversible after 45 days of cessation of cigarette smoking to the rabbits.


Assuntos
Fumar Cigarros/efeitos adversos , Transtornos do Olfato , Mucosa Olfatória , Olfato/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Microscopia Eletrônica de Varredura/métodos , Transtornos do Olfato/etiologia , Transtornos do Olfato/patologia , Transtornos do Olfato/terapia , Mucosa Olfatória/diagnóstico por imagem , Mucosa Olfatória/efeitos dos fármacos , Coelhos , Abandono do Hábito de Fumar
10.
Brain Sci ; 14(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38248261

RESUMO

Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.

11.
J Neurol Surg B Skull Base ; 85(2): 109-118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38463937

RESUMO

Objectives Ectopic olfactory neuroblastoma is an uncommon manifestation of an already rare neoplasm. We aimed to systematically review the literature for cases of ectopic olfactory neuroblastoma to better characterize this rare disease entity and to present two new case reports. Methods A search of the PubMed and Embase databases was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify English-language articles reporting cases of ectopic olfactory neuroblastoma, published from 1955 through November 2021. Results Sixty-six cases of ectopic olfactory neuroblastoma were identified in 62 articles including the current review. Ectopic olfactory neuroblastoma arose in a wide age range (2-89 years) without significant sex predilection. It occurred most commonly in the ethmoid (25%), maxillary (25%), and sphenoid (16%) sinuses. Seventy-three percent of cases presented with low Hyams grade (I and II). The most common symptoms were nasal obstruction (32%) and epistaxis (32%). Paraneoplastic syndromes were observed in 27% of patients. The most common treatment was surgical resection followed by adjuvant radiotherapy. Overall, 76% of all patients were disease-free at the time of last follow-up. Locoregional recurrences and distant metastases were found in 19 and 5% of cases, respectively. Conclusion This systematic review describes previously reported cases of ectopic olfactory neuroblastoma, a disease entity with poorly understood characteristics. Physicians should consider olfactory neuroblastoma in the differential diagnosis for sinonasal masses, as their ectopic presentation may present considerable diagnostic and therapeutic difficulties. Patients with olfactory neuroblastoma may benefit from long-term follow-up and routine endoscopic examinations for surveillance of ectopic recurrences.

12.
Auris Nasus Larynx ; 50(3): 358-364, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35999123

RESUMO

OBJECTIVE: Olfactory neuroblastoma (ONB) is often difficult to pathologically distinguish from other small round cell tumors (SRCTs) arising in the nasal cavities. Although there are several diagnostic markers used for differential diagnosis of ONB, these molecules are also expressed in various neuronal derived tumors. Here, we examined the expression of NeuroD, GAP43, and olfactory marker protein (OMP) in ONB and non-ONB SRCT to determine their utility in the differential diagnosis of ONB. METHODS: Twenty-six patients diagnosed with and treated for ONB at Kobe University Hospital between 1997 and 2017 with formalin-fixed, paraffin-embedded biopsy or surgical resection specimens were included. The expressions of NeuroD, GAP43, and OMP were immunohistochemically examined in these 26 ONB specimens and specimens from 13 SRCTs arising in the nasal cavities for reference. RESULTS: Among the 26 ONB samples, focal, patchy, and marked staining for NeuroD was observed in 4, 3, and 9 samples, respectively. Focal, patchy, and marked GAP43 staining was observed in 5, 3, and 11 samples, respectively. Consequently, marked positive staining for either NeuroD or GAP43 was observed in 54% (14/26) of ONBs. Among the 13 SRCTs, marked staining for NeuroD was observed in two small cell carcinomas, one undifferentiated carcinoma, and one neuroendocrine carcinoma, whereas marked positive staining for GAP43 was observed only in one undifferentiated carcinoma. No specimen in this study exhibited OMP staining. CONCLUSIONS: Our results suggest possible roles of GAP43 immunostaining in the differential diagnosis of ONB.


Assuntos
Carcinoma Neuroendócrino , Estesioneuroblastoma Olfatório , Neoplasias Nasais , Humanos , Carcinoma Neuroendócrino/patologia , Estesioneuroblastoma Olfatório/patologia , Cavidade Nasal/patologia , Neoplasias Nasais/patologia , Proteína de Marcador Olfatório , Proteína GAP-43/metabolismo
13.
Anat Rec (Hoboken) ; 305(3): 643-667, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34117725

RESUMO

In a species of baleen whale, we identify olfactory epithelium that suggests a functional sense of smell and document the ontogeny of the surrounding olfactory anatomy. Whales must surface to breathe, thereby providing an opportunity to detect airborne odorants. Although many toothed whales (odontocetes) lack olfactory anatomy, baleen whales (mysticetes) have retained theirs. Here, we investigate fetal and postnatal specimens of bowhead whales (Balaena mysticetus). Computed tomography (CT) reveals the presence of nasal passages and nasal chambers with simple ethmoturbinates through ontogeny. Additionally, we describe the dorsal nasal meatuses and olfactory bulb chambers. The cribriform plate has foramina that communicate with the nasal chambers. We show this anatomy within the context of the whole prenatal and postnatal skull. We document the tunnel for the ethmoidal nerve (ethmoid foramen) and the rostrolateral recess of the nasal chamber, which appears postnatally. Bilateral symmetry was apparent in the postnatal nasal chambers. No such symmetry was found prenatally, possibly due to tissue deformation. No nasal air sacs were found in fetal development. Olfactory epithelium, identified histologically, covers at least part of the ethmoturbinates. We identify olfactory epithelium using six explicit criteria of mammalian olfactory epithelium. Immunohistochemistry revealed the presence of olfactory marker protein (OMP), which is only found in mature olfactory sensory neurons. Although it seems that these neurons are scarce in bowhead whales compared to typical terrestrial mammals, our results suggest that bowhead whales have a functional sense of smell, which they may use to find prey.


Assuntos
Baleia Franca , Animais , Osso Etmoide , Cavidade Nasal/diagnóstico por imagem , Mucosa Olfatória , Crânio
14.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230989

RESUMO

Loss of the sense of smell (anosmia) has been included as a COVID-19 symptom by the World Health Organization. The majority of patients recover the sense of smell within a few weeks postinfection (short-term anosmia), while others report persistent anosmia. Several studies have investigated the mechanisms leading to anosmia in COVID-19; however, the evidence is scattered, and the mechanisms remain poorly understood. Based on a comprehensive review of the literature, we aim here to evaluate the current knowledge and uncertainties regarding the mechanisms leading to short-term anosmia following SARS-CoV-2 infection. We applied an adverse outcome pathway (AOP) framework, well established in toxicology, to propose a sequence of measurable key events (KEs) leading to short-term anosmia in COVID-19. Those KEs are (1) SARS-CoV-2 Spike proteins binding to ACE-2 expressed by the sustentacular (SUS) cells in the olfactory epithelium (OE); (2) viral entry into SUS cells; (3) viral replication in the SUS cells; (4) SUS cell death; (5) damage to the olfactory sensory neurons and the olfactory epithelium (OE). This AOP-aligned approach allows for the identification of gaps where more research should be conducted and where therapeutic intervention could act. Finally, this AOP gives a frame to explain several disease features and can be linked to specific factors that lead to interindividual differences in response to SARS-CoV-2 infection.


Assuntos
Rotas de Resultados Adversos , COVID-19 , Transtornos do Olfato , Anosmia/etiologia , COVID-19/complicações , Humanos , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , SARS-CoV-2 , Olfato/fisiologia , Glicoproteína da Espícula de Coronavírus
15.
Turk Arch Otorhinolaryngol ; 60(2): 65-71, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36105525

RESUMO

Objective: How the presence of olfactory structures in olfactory cleft polyps (OCPs) affect olfaction function outcomes after surgical removal has not yet been investigated. In this study we aimed to assess the presence of olfactory structures in OCPs and correlate these findings with olfactory outcomes after endoscopic sinus surgery (ESS). Methods: Twenty seven patients with OCP underwent preoperative topical and systemic steroid treatment and ESS. Biopsies from the middle meatal polyps (MMPs) and OCPs were immunohistochemically analyzed for olfactory marker protein (OMP). The smell diskettes olfaction test was applied to patients at baseline, after steroid treatment (AST) and after ESS. Results: OCPs exhibited OMP staining more commonly and intensely compared to MMPs (p=0.008), however, there were no correlations between OMP staining scores and any of the olfaction scores (p>0.05). Steroid treatment increased smell function significantly (p<0.001), however, there were no significant differences between AST and after ESS smell scores (p=0.17). There were significant correlations between smell gains AST and final smell gains after ESS (r=0.665, p<0.001). Conclusion: OCPs contain olfactory neuroepithelium more commonly and intensely than MMPs in nasal polyp patients. However, surgical importance of this finding is controversial because removal of these polyps did not decrease smell function postoperatively in our study. Nasal polyp patients who will take steroid treatment pre-operatively must be informed that the success of ESS on olfaction depends on the response of the steroid treatment and ESS AST might not have additional favorable effect on smell function.

16.
PeerJ ; 9: e12261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760352

RESUMO

Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat (Cynopterus sphinx) and a late fetal vampire bat (Desmodus rotundus) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman's glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman's glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.

17.
J Leukoc Biol ; 109(3): 481-496, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32725843

RESUMO

Neutrophils are generally considered as short-lived, homogenous, and terminally differentiated phagocytes that play crucial roles in conquering infection, although they occasionally cause severe collateral tissue damage or chronic inflammation. Recent reports have indicated that neutrophils also play a protective role in inflammation resolution and tissue repair. However, how terminally differentiated neutrophils have diverse functions remains unclear. Here, we show that neutrophils undergo conversion into Ly6G+ SiglecF+ double-positive cells expressing neurosupportive genes in the olfactory neuroepithelium (OE) under an inflammatory state. Through comprehensive flow cytometric analysis of murine nose, we identified Ly6G+ SiglecF+ double-positive cells that reside only in the OE under steady-state conditions. Double-positive cells were neutrophil-derived cells and increased by more than 10-fold during inflammation or tissue injury. We found that neutrophils infiltrate into the nose to express proinflammatory genes in the acute phase of inflammatory state, and they gradually change their surface markers and gene expression, expressing some neurogenesis-related genes in addition to inflammation related genes in the later phase. As the OE is known to have exceptionally high regeneration capacity as a nervous system, these findings suggest that neutrophils have the potential to contribute neurogenesis after conversion in peripheral nervous tissues, providing a challenge on a classic view of neutrophils as terminally differentiated leukocytes.


Assuntos
Antígenos Ly/metabolismo , Células Neuroepiteliais/citologia , Neurônios/citologia , Neutrófilos/imunologia , Bulbo Olfatório/citologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Contagem de Células , Proliferação de Células , Forma Celular , Eosinófilos/metabolismo , Feminino , Regulação da Expressão Gênica , Inflamação/patologia , Camundongos Endogâmicos C57BL , Neurogênese/genética , Nariz/patologia
18.
Mol Neurobiol ; 58(4): 1695-1710, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33237429

RESUMO

Cannabis is the third most commonly used psychoactive substance of abuse, yet it also receives considerable attention as a potential therapeutic drug. Therefore, it is essential to fully understand the actions of cannabis in the human brain. The olfactory neuroepithelium (ON) is a peripheral nervous tissue that represents an interesting surrogate model to study the effects of drugs in the brain, since it is closely related to the central nervous system, and sensory olfactory neurons are continually regenerated from populations of stem/progenitor cells that undergo neurogenesis throughout life. In this study, we used ON cells from chronic cannabis users and healthy control subjects to assess alterations in relevant cellular processes, and to identify changes in functional proteomic pathways due to cannabis consumption. The ON cells from cannabis users exhibited alterations in the expression of proteins that were related to the cytoskeleton, cell proliferation and cell death, as well as, changes in proteins implicated in cancer, gastrointestinal and neurodevelopmental pathologies. Subsequent studies showed cannabis provoked an increase in cell size and morphological alterations evident through ß-Tubulin III staining, as well as, enhanced beta-actin expression and a decrease in the ability of ON cells to undergo cell attachment, suggesting abnormalities of the cytoskeleton and cell adhesion system. Furthermore, these cells proliferated more and underwent less cell death. Our results indicate that cannabis may alter key processes of the developing brain, some of which are similar to those reported in mental disorders like DiGeorge syndrome, schizophrenia and bipolar disorder.


Assuntos
Apoptose , Biomarcadores/metabolismo , Cannabis/efeitos adversos , Citoesqueleto/patologia , Células Neuroepiteliais/patologia , Bulbo Olfatório/patologia , Transtornos Relacionados ao Uso de Substâncias/patologia , Adulto , Atenção , Adesão Celular , Diferenciação Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Masculino , Proteoma/metabolismo , Proteômica
19.
J Pers Med ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668817

RESUMO

A close epidemiological link has been reported between cannabis use and schizophrenia (SCZ). However, biochemical markers in living humans related to the impact of cannabis in this disease are still missing. Olfactory neuroepithelium (ON) cells express neural features and offer a unique advantage to study biomarkers of psychiatric diseases. The aim of our study was to find exclusively deregulated proteins in ON cells of SCZ patients with and without a history of cannabis use. Thus, we compared the proteomic profiles of SCZ non-cannabis users (SCZ/nc) and SCZ cannabis users (SCZ/c) with control subjects non-cannabis users (C/nc) and control cannabis users (C/c). The results revealed that the main cascades affected in SCZ/nc were cell cycle, DNA replication, signal transduction and protein localization. Conversely, cannabis use in SCZ patients induced specific alterations in metabolism of RNA and metabolism of proteins. The levels of targeted proteins in each population were then correlated with cognitive performance and clinical scores. In SCZ/c, the expression levels of 2 proteins involved in the metabolism of RNA (MTREX and ZNF326) correlated with several cognitive markers and clinical signs. Moreover, use duration of cannabis negatively correlated with ZNF326 expression. These findings indicate that RNA-related proteins might be relevant to understand the influence of cannabis use on SCZ.

20.
Schizophr Bull ; 46(6): 1547-1557, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249318

RESUMO

Schizophrenia (SCZ) has been associated with serotonergic and endocannabinoid systems dysregulation, but difficulty in obtaining in vivo neurological tissue has limited its exploration. We investigated CB1R-5-HT2AR heteromer expression and functionality via intracellular pERK and cAMP quantification in olfactory neuroepithelium (ON) cells of SCZ patients non-cannabis users (SCZ/nc), and evaluated whether cannabis modulated these parameters in patients using cannabis (SCZ/c). Results were compared vs healthy controls non-cannabis users (HC/nc) and healthy controls cannabis users (HC/c). Further, antipsychotic effects on heteromer signaling were tested in vitro in HC/nc and HC/c. Results indicated that heteromer expression was enhanced in both SCZ groups vs HC/nc. Additionally, pooling all 4 groups together, heteromer expression correlated with worse attentional performance and more neurological soft signs (NSS), indicating that these changes may be useful markers for neurocognitive impairment. Remarkably, the previously reported signaling properties of CB1R-5-HT2AR heteromers in ON cells were absent, specifically in SCZ/nc treated with clozapine. These findings were mimicked in cells from HC/nc exposed to clozapine, suggesting a major role of this antipsychotic in altering the quaternary structure of the CB1R-5-HT2AR heteromer in SCZ/nc patients. In contrast, cells from SCZ/c showed enhanced heteromer functionality similar to HC/c. Our data highlight a molecular marker of the interaction between antipsychotic medication and cannabis use in SCZ with relevance for future studies evaluating its association with specific neuropsychiatric alterations.


Assuntos
Antipsicóticos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Uso da Maconha , Células Neuroepiteliais , Neurônios Receptores Olfatórios , Receptor CB1 de Canabinoide , Receptor 5-HT2A de Serotonina , Esquizofrenia/metabolismo , Adulto , Agonistas de Receptores de Canabinoides/sangue , Células Cultivadas , Clozapina/farmacologia , Estudos Transversais , Dronabinol/sangue , Feminino , Humanos , Masculino , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/metabolismo , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA