Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Microb Pathog ; 191: 106669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697231

RESUMO

African swine fever (ASF) is a lethal disease caused by ASF virus (ASFV), severely impacting the global swine industry. Though nuclear acid-based detection methods are reliable, they are laboratory-dependent. In this study, we developed a device-independent, user friendly and cost-effective quantum dots based immunochromatographic strip (QDs-ICS) with high specificity and sensitivity for the rapid and on-site detection of ASFV antigen. For the preparation of the QDs-ICS, we generated a monoclonal antibody (mAb) mAb-8G8 and polyclonal antibody (pAb) against ASFV-p72 protein. The pAb was labelled with QDs to be used as the detection probe and the mAb-8G8 was coated on the nitrocellulose membrane as the test line. Our results proved that the strip displayed no cross-reactivity with other swine viruses and detection limit of the QDs-ICS was down to 1 ng/mL for the ASFV-p72 protein with great reproducibility. The strip also exhibited high stability with a storage period up to 12 months under room temperature. Twenty blind samples and one hundred clinical samples were examined by the QDs-ICS, conventional PCR and real-time PCR method, respectively. Results showed that the agreement rate between the QDs-ICS and PCR method was 100%, and the agreement rate between the strip and real-time PCR was 94%. The novel QDs-ICS developed here would be an effective tool for on-site detection of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais , Cromatografia de Afinidade , Pontos Quânticos , Sensibilidade e Especificidade , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/genética , Animais , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Febre Suína Africana/imunologia , Suínos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Cromatografia de Afinidade/métodos , Antígenos Virais/análise , Antígenos Virais/imunologia , Reprodutibilidade dos Testes , Fitas Reagentes
2.
Microb Pathog ; 189: 106600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428469

RESUMO

Echinococcus granulosus (Eg) and Echinococcus multilocularis (Em) are the two most widely prevalent types of echinococcosis. Several diagnostic methods have been developed for detecting Eg and Em. However, some limitations, such as being time-consuming, needing expensive instruments, or exhibiting low sensitivity, make these methods unsuitable for on-site detection. In this study, a dual-RPA assay was established to detect and differentiate Eg and Em. The primer concentration ratio, reaction time, and reaction temperature of the dual-RPA were optimized. The result showed that the primer concentration ratio of Eg:Em was 400 nM:400 nM, and the best amplification efficiency was obtained by reacting at 38 °C for 20 min. The sensitivity, specificity, and repeatability of the assay were also tested. The assay's detection limit for both Eg and Em was 10 copies/µL. The assay showed reasonable specificity by testing ten parasitic nucleic acids. The assay's intra- and inter-batch coefficients of variation were below 10%, which indicates robust reproducibility of the assay. Finally, to validate the performance of the dual-RPA assay, it was compared with real-time PCR by using 86 clinical nucleic acid samples. The coincidence rate of Eg between dual-RPA and TaqMan real-time PCR was 96.51%, and the coincidence rate of Em between dual-RPA and TaqMan real-time PCR was 98.84%, indicating its potential for accurate clinical diagnosis. Therefore, this study established a rapid and sensitive dual-RPA assay that can rapidly detect and differentiate Eg and Em in one reaction tube and provided a new assay for the detection of echinococcosis in the field.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Equinococose/diagnóstico , Echinococcus granulosus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
Anal Biochem ; 693: 115597, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969155

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Assuntos
Técnicas Eletroquímicas , Irídio , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolamento & purificação , Vibrio parahaemolyticus/genética , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas/métodos , Irídio/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção , Eletrodos
4.
Phytopathology ; 114(2): 474-483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589413

RESUMO

Brassica yellows virus (BrYV) is an economically important virus on cruciferous species. In this study, a one-pot reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system was developed for the detection of BrYV. The limit of detection of this method reached 32.8 copies of the BrYV ORF5, which is 100-fold more sensitive than the RT-LAMP method. Moreover, there was no cross-reactivity with other rapeseed-infecting RNA viruses or poleroviruses. We dried the CRISPR/Cas12a reagent in a trehalose and pullulan mixture to retain its efficacy at the RT-LAMP temperature of 63°C in order to allow portable BrYV detection in a water bath. The entire process can be performed in about 1 h, and a positive result can be rapidly and conveniently detected using a handheld UV lamp. In the field, the RT-LAMP-CRISPR/Cas12a assay was accurate and had higher sensitivity than RT-LAMP and reverse transcription-polymerase chain reaction assays. The novel RT-LAMP-CRISPR/Cas12a assay allows convenient, portable, rapid, low-cost, highly sensitive, and specific detection of BrYV and has great potential for on-site monitoring of BrYV.


Assuntos
Brassica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Transcrição Reversa , Sistemas CRISPR-Cas , Doenças das Plantas
5.
J Dairy Sci ; 107(8): 5438-5448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608956

RESUMO

Staphylococcus aureus is a pathogenic bacterium contaminating milk and dairy foods causing food poisoning and foodborne pathogens. In this work, a smartphone-enabled enzyme cascade-triggered colorimetric platform was constructed using a cascade bio-nanozyme formed by immobilized glucose oxidase (GOx) on Fe3O4@Ag for rapid detection of S. aureus. Benefiting from reasonable experimental design, a bio-nanozyme cascade-triggered reaction was achieved through H2O2 produced by GOx oxidation of glucose, followed by in situ catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) by the inherent peroxidase-like activity of Fe3O4@Ag to produce color signals. Staphylococcus aureus detection could be performed through naked-eye observation and smartphone measurement, and the developed assay can achieve quantitative and qualitative detection of S. aureus. The on-site nanoplatform had satisfactory specificity and sensitivity with a low detection limit of 6.9 cfu·mL-1 in 50 min. Moreover, the nanoplatform has good practicality in the detection of S. aureus in milk samples. Therefore, the assay has potential application prospects in food safety inspection.


Assuntos
Colorimetria , Leite , Smartphone , Staphylococcus aureus , Leite/microbiologia , Staphylococcus aureus/enzimologia , Animais , Glucose Oxidase , Benzidinas , Técnicas Biossensoriais
6.
Mikrochim Acta ; 191(5): 257, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600405

RESUMO

A new detection platform based on CaCO3-based magnetic micromotor (CaCO3@Fe3O4) integrated with graphene field effect transistor (GFET) was construct and used for on-site SARS-CoV-2 coronavirus pathogen detection. The CaCO3@Fe3O4 micromotor, which was modified with anti-SARS-CoV-2 (labelled antibody, AntiE1), can self-moved in the solution containing hydrochloric acid (HCl) and effective to capture the SARS-CoV-2 coronavirus pathogens. After magnetic field separation, the capture micromotor was detected by GFET, exhibiting a good linear relationship within the range of 1 ag/mL to 100 ng/mL and low detection limit (0.39 ag/mL). Furthermore, the detection platform was also successfully applied to detection of SARS-CoV-2 coronavirus pathogens in soil solution, indicating the potential use in on-site application.


Assuntos
Doenças Transmissíveis , Grafite , Humanos , Anticorpos , SARS-CoV-2 , Fenômenos Magnéticos
7.
Mikrochim Acta ; 191(3): 122, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319462

RESUMO

A cupric oxide (CuO) nanosheet-based chemical fluorescence sensor was developed to realize the detection of acetone in aqueous solutions. CuO is an oxidase mimic and can catalyze the oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (oxOPD). Interestingly, acetone was found to possess the scavenging ability for superoxide anions generated in the CuO-catalyzed oxidation system, hence weakening the OPD oxidation and leading to a reduction in the fluorescence intensity of the catalyzing system at 574 nm under excitation at 425 nm. Based on this property of acetone, a fluorescent sensor was constructed to detect acetone. The sensor exhibits a linear range of 1.35 to 2 × 105 µmol L-1 and a detection limit of 1.08 µmol L-1. Additionally, a smartphone-free portable device was constructed to realize on-the-spot and rapid detection of acetone in cauliflower, mineral water, tap water, and lake water samples. The recoveries by the portable device are 93.2 to 108% for actual samples, with relative standard deviations of less than 4.3%, indicating a potential application prospect of the device in on-site detection.

8.
Mikrochim Acta ; 191(6): 343, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801537

RESUMO

A portable and integrated electrochemical detection system has been constructed for on-site and real-time detection of chemical oxygen demand (COD). The system mainly consists of four parts: (i) sensing electrode with a copper-cobalt bimetallic oxide (CuCoOx)-modified screen-printed electrode; (ii) an integrated electrochemical detector for the conversion, amplification, and transmission of weak signals; (iii) a smartphone installed with a self-developed Android application (APP) for issuing commands, receiving, and displaying detection results; and (iv) a 3D-printed microfluidic cell for the continuous input of water samples. Benefiting from the superior catalytic capability of CuCoOx, the developed system shows a high detection sensitivity with 0.335 µA/(mg/L) and a low detection limit of 5.957 mg/L for COD determination and possessing high anti-interference ability to chloride ions. Moreover, this system presents good consistency with the traditional dichromate method in COD detection of actual water samples. Due to the advantages of cost effectiveness, portability, and point-of-care testing, the system shows great potential for water quality monitoring, especially in resource-limited remote areas.

9.
Mikrochim Acta ; 191(3): 127, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334844

RESUMO

A one-target-many-trigger signal model sensing strategy is proposed for quickly, sensitive and on-site detection of the environmental pollutant p-aminophenol (PAP) by use of a commercial personal glucose meter (PGM) for signal readout with the core-shell "loading-type" nanomaterial MSNs@MnO2 as amplifiable nanoprobes. In this design, the mesoporous silica nanoparticles (MSNs) nanocontainer with entrapped signal molecule glucose is coated with redoxable manganese dioxide (MnO2) nanosheets to form the amplifiable nanoprobes (Glu-MSNs@MnO2). When encountered with PAP, the redox reaction between the MnO2 and PAP can induce the degradation of the outer layer of MSNs@MnO2, liberating multiple copies of the loaded glucose to light up the PGM signal. Owing to the high loading capability of nanocarriers, a "one-to-many" relationship exists between the target and the signal molecule glucose, which can generate adequate signal outputs to achieve the requirement of on-site determination of environmental pollutants. Taking advantage of this amplification mode, the developed PAP assay owns a dynamic linear range of 10.0-400 µM with a detection limit of 2.78 µM and provides good practical application performance with above 96.7 ± 4.83% recovery in environmental water and soil samples. Therefore, the PGM-based amplifiable sensor for PAP proposed can accommodate these requirements of environment monitoring and has promising potential for evaluating pollutants in real environmental samples.


Assuntos
Aminofenóis , Nanoestruturas , Óxidos , Compostos de Manganês , Glucose , Dióxido de Silício
10.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38610279

RESUMO

This review introduces a micro-integrated device of microfluidics and fiber-optic sensors for on-site detection, which can detect certain or several specific components or their amounts in different samples within a relatively short time. Fiber-optics with micron core diameters can be easily coated and functionalized, thus allowing sensors to be integrated with microfluidics to separate, enrich, and measure samples in a micro-device. Compared to traditional laboratory equipment, this integrated device exhibits natural advantages in size, speed, cost, portability, and operability, making it more suitable for on-site detection. In this review, the various optical detection methods used in this integrated device are introduced, including Raman, ultraviolet-visible, fluorescence, and surface plasmon resonance detections. It also provides a detailed overview of the on-site detection applications of this integrated device for biological analysis, food safety, and environmental monitoring. Lastly, this review addresses the prospects for the future development of microfluidics integrated with fiber-optic sensors.

11.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544011

RESUMO

When mining deep coal seams with thin bedrock and thick alluvium, the collapse and fracture of thin bedrock layers may cause geological disasters, such as water inrush and sand inrush of the mining face. Comprehensively obtaining the response data of coal mining and reasonably analyzing the failure characteristics of overlying strata are helpful in guiding safe production. In this study, the caving zone heights of overlying strata are obtained by field detection during layered mining. Then, the caving zone heights during the once-full-height mining are evaluated by theoretical analysis. Further, the force and failure characteristics of coal-rock structures under different mining conditions are compared by the simulation detection and analysis. Finally, the results of on-site observation, theoretical analysis, and simulation detection are compared and discussed, and an optimized mining technology is proposed to ensure safe mining. The research shows the caving zone heights of on-site and simulation detections are, respectively, 14.65 m and 13.5 m during bottom-layer mining, which is larger than the caving zone heights of the top-layer coal mining. During once-full-height mining, the maximum caving zone height of simulation detection is 21 m, which is in between two standard results. For the mechanical responses of an aquiclude clay layer under thick loose alluvium, the maximum disturbance displacement of clay aquiclude is 5.8 m during layered mining, which is slightly larger than the disturbance displacement of once full-height mining; however, the maximum stress of the clay layer is 25 MPa during once-full-height mining, which is larger than the maximum stress of clay layer during layered mining. For the clay aquiclude failure, the clay layer during layered mining is in the deflection deformation area, and there is no obvious fracture structure to inrush the water and sand of thick loose alluvium; however, the clay layer during once-full-height mining is prone to produce obvious fracture structure. Therefore, the layered mining technology can effectively reduce and prevent the water/sand inrush disaster of mining working face.

12.
Crit Rev Biotechnol ; 43(3): 415-432, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35156471

RESUMO

While the research field and industrial market of in vitro diagnosis (IVD) thrived during and post the COVID-19 pandemic, the development of isothermal nucleic acid amplification test (INAAT) based rapid diagnosis was engendered in a global wised large measure as a problem-solving exercise. This review systematically analyzed the recent advances of INAAT strategies with practical case for the real-world scenario virus detection applications. With the qualities that make INAAT systems useful for making diagnosis relevant decisions, the key performance indicators and the cost-effectiveness of enzyme-assisted methods and enzyme-free methods were compared. The modularity of nucleic acid amplification reactions that can lead to thresholding signal amplifications using INAAT reagents and their methodology design were examined, alongside the potential application with rapid test platform/device integration. Given that clinical practitioners are, by and large, unaware of many the isothermal nucleic acid test advances. This review could bridge the arcane research field of different INAAT systems and signal output modalities with end-users in clinic when choosing suitable test kits and/or methods for rapid virus detection.


Assuntos
COVID-19 , Ácidos Nucleicos , Vírus , Humanos , Pandemias , Técnicas de Amplificação de Ácido Nucleico/métodos , Tecnologia
13.
J Fish Dis ; 46(12): 1357-1365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635423

RESUMO

White spot disease (WSD) in shrimp is an acute infectious disease caused by white spot syndrome virus (WSSV). WSD has seriously threatened the security of shrimp farming, causing huge economic losses worldwide. As there is currently no effective treatment for WSD, developing early detection technologies for WSSV is of great significance for the prevention. In this study, we have established a detection method for WSSV using a combination of recombinase polymerase amplification (RPA) and Pyrococcus furiosus Argonaute (PfAgo). We have achieved a detection sensitivity of single copy per reaction, which is more sensitive than the previously reported detection methods. Additionally, we have demonstrated high specificity. The entire detection process can be completed within 75 min without the need for precise thermal cyclers, making it suitable for on-site testing. The fluorescence signal generated by the reaction can be quantified using a portable fluorescence detector or observed with the naked eye under a blue light background. This study provides an ultrasensitive on-site detection method for WSSV in shrimp aquaculture and expands the application of PfAgo in the field of aquatic disease diagnosis.


Assuntos
Doenças dos Peixes , Penaeidae , Pyrococcus furiosus , Vírus da Síndrome da Mancha Branca 1 , Animais , Recombinases , Vírus da Síndrome da Mancha Branca 1/genética , Pyrococcus furiosus/genética , Aquicultura/métodos
14.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896749

RESUMO

Bisphenol A (BPA) is an industrial chemical used extensively in plastics and resins. However, its endocrine-disrupting properties pose risks to human health and the environment. Thus, accurate and rapid detection of BPA is crucial for exposure monitoring and risk mitigation. Molecularly imprinted electrochemical sensors (MIES) have emerged as a promising tool for BPA detection due to their high selectivity, sensitivity, affordability, and portability. This review provides a comprehensive overview of recent advances in MIES for BPA detection. We discuss the operating principles, fabrication strategies, materials, and methods used in MIES. Key findings show that MIES demonstrate detection limits comparable or superior to conventional methods like HPLC and GC-MS. Selectivity studies reveal excellent discrimination between BPA and structural analogs. Recent innovations in nanomaterials, novel monomers, and fabrication techniques have enhanced sensitivity, selectivity, and stability. However, limitations exist in reproducibility, selectivity, and stability. While challenges remain, MIES provide a low-cost portable detection method suitable for on-site BPA monitoring in diverse sectors. Further optimization of sensor fabrication and characterization will enable the immense potential of MIES for field-based BPA detection.


Assuntos
Impressão Molecular , Humanos , Impressão Molecular/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Plásticos
15.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765744

RESUMO

A Love-type acoustic wave sensor (AT-cut quartz substrate, SiO2 guiding layer) with a center frequency of approximately 120 MHz was used to detect a simulant of pathogenic botulinum neurotoxin type A-recombinant of BoNT-A light chain-in liquid samples. The sensor was prepared by immobilizing monoclonal antibodies specific for botulinum neurotoxin via a thiol monolayer deposited on a gold substrate. Studies have shown that the sensor enables selective analyte detection within a few minutes. In addition, the sensor can be used several times (regeneration of the sensor is possible using a low pH buffer). Nevertheless, the detectability of the analyte is relatively low compared to other analytical techniques that can be used for rapid detection of botulinum neurotoxin. The obtained results confirm the operation of the proposed sensor and give hope for further development of this label-free technique for detecting botulinum neurotoxin.


Assuntos
Técnicas Biossensoriais , Dióxido de Silício , Imunoensaio , Anticorpos Monoclonais , Som
16.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838585

RESUMO

Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Espectrometria de Massas
17.
Environ Monit Assess ; 195(12): 1442, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37945767

RESUMO

The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.


Assuntos
Técnicas Biossensoriais , Água Potável , Nanopartículas Metálicas , Água Potável/microbiologia , Staphylococcus aureus/genética , Prata , Técnicas Biossensoriais/métodos , Smartphone , Reprodutibilidade dos Testes , Monitoramento Ambiental , Escherichia coli/genética , DNA
18.
Trends Analyt Chem ; 157: 116759, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36035092

RESUMO

COVID-19 has already been lasting for more than two years and it has been severely affecting the whole world. Still, detection of SARS-CoV-2 remains the frontline approach to combat the pandemic, and the reverse transcription polymerase chain reaction (RT-PCR)-based method is the well recognized detection method for the enormous analytical demands. However, the RT-PCR method typically takes a relatively long time, and can produce false positive and false negative results. Mass spectrometry (MS) is a very commonly used technique with extraordinary sensitivity, specificity and speed, and can produce qualitative and quantitative information of various analytes, which cannot be achieved by RT-PCR. Since the pandemic outbreak, various mass spectrometric approaches have been developed for rapid detection of SARS-CoV-2, including the LC-MS/MS approaches that could allow analysis of several hundred clinical samples per day with one MS system, MALDI-MS approaches that could directly analyze clinical samples for the detection, and efforts for the on-site detection with portable devices. In this review, these mass spectrometric approaches were summarized, and their pros and cons as well as further development were also discussed.

19.
J Fluoresc ; 32(3): 1059-1071, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303237

RESUMO

A Fluorescent chemosensor based on pyrene scaffold, 5-diethylamino-2-(pyren-1-yliminomethyl)-phenol (PDS) is synthesized using condensation method. It displays novel aggregation-induced emission (AIE) phenomena in its aggregated/solid state. The AIE characteristic of PDS is studied in CH3CN/H2O mixtures at different volume percentage of water and morphology of the aggregated particles are investigated by DLS and optical fluorescence microscopic study. The probe is aggregated into ordered one-dimensional (1-D) rod like microcrystals and exhibit high efficiency of solid-state emission with green colour. By taking advantage of its interesting AIE feature, the aggregated hydrosol has been utilized as 'off-on' type fluorescence switching chemosensor with superb selectivity and sensitivity towards Cu2+ions and the limit of detection (LOD) was calculated as low as 6.3 µM. A high Stern-Volmer quenching constant was estimated to be 2.88 × 105 M-1. The proposed chemosensor with AIE feature reveals a prospective view for the on-site visual recognition of Cu2+ ions in fluorescent paper strips and the synthesized probe is also exploited to find out the concentration of Cu2+ions in real water samples.


Assuntos
Cobre , Corantes Fluorescentes , Cobre/química , Corantes Fluorescentes/química , Íons , Estudos Prospectivos , Pirenos , Espectrometria de Fluorescência , Água/química
20.
J Sci Food Agric ; 102(14): 6211-6219, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35478166

RESUMO

BACKGROUND: Surface-enhanced Raman scattering (SERS) substrates based on metallic nanoparticles locked in some flexible materials have great potential for rapid detection of pesticide residues in foods, but these substrates are generally not reusable. RESULTS: A bendable and reusable sponge based on polydimethylsiloxane (PDMS) and Au nanospheres was synthesized and employed as SERS substrate to analyze thiram on the surfaces of apples and grapes (20-1000 ng cm-2 ) and in their juices (0.5-5.0 mg L-1 ) with minimum sample pretreatments. The lowest detectible concentrations for thiram in fruit juices and on fruit skins were 0.5 mg L-1 and 20 ng cm-2 , respectively. The Au-PDMS substrate had acceptable intra-reproducibility for SERS analysis of thiram in fruit juices and on fruit skins, resulting in 3.6-16.9% relative standard deviation (RSD) for the SERS signal of the primary peak of thiram. Moreover, the Au-PDMS substrate exhibited distinguished reusability and stability, which could provide a reproducible SERS signal of thiram in apple juice even after the substrate being reused ten times (RSDs for the three major characteristic peaks of thiram were 2.7-10.5% during the ten reused cycles). CONCLUSION: This flexible and reusable Au-PDMS SERS substrate for thiram detection could be readily extended to the analysis of other trace chemicals in a broad range of foods, providing a new possibility for SERS application. © 2022 Society of Chemical Industry.


Assuntos
Malus , Nanopartículas Metálicas , Resíduos de Praguicidas , Dimetilpolisiloxanos , Frutas/química , Ouro/química , Malus/química , Nanopartículas Metálicas/química , Resíduos de Praguicidas/análise , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos , Tiram
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA