Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Chem ; 26(38): 6896-6914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30381066

RESUMO

This article presents a brief review of the knowledge concerning onion-like carbons (OLCs). These nanostructures are some of the most fascinating carbon forms due to their unusual structure and physico-chemical properties. Generally, OLCs consist of a hollowspherical fullerene core surrounded by concentric graphitic layers with increasing diameter. Nevertheless, they can have different size, shape and type of core, which determine their physicochemical properties. In this article, we review the most important literature reports in this area and briefly describe these nanostructures, their physical and chemical properties and their potential uses with a focus on biomedicine.


Assuntos
Carbono/química , Nanoestruturas/química , Animais , Técnicas Biossensoriais/métodos , Fulerenos/química , Grafite/química , Humanos , Nanoestruturas/toxicidade , Imagem Óptica/métodos , Propriedades de Superfície
2.
ACS Nano ; 11(1): 1012-1025, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28009498

RESUMO

We present a detailed study on the resonant gain (RG) phenomena occurring in two nanostructures, in which the presence of dielectric singularities is used to reach a huge amplification of the emitted photons resonantly interacting with the system. The presence of gain molecules in the considered nanoresonator systems makes it possible to obtain optical features that are able to unlock several applications. Two noticeable cases have been investigated: a 1D nanoresonator based on hyperbolic metamaterials and a 3D metal/dielectric spherical multishell. The former has been designed in the framework of the effective medium theory, in order to behave as an epsilon-near-zero-and-pole metamaterial, showing extraordinary light confinement and collimation. Such a peculiarity represents the key to lead to a RG behavior, a condition in which the system is demonstrated to behave as a self-amplifying perfect lens. Very high enhancement and spectral sharpness of 1 nm of the emitted light are demonstrated by means of a transfer matrix method simulation. The latter system consists of a metal/doped-dielectric multishell. A dedicated theoretical approach has been set up to finely engineer its doubly tunable resonant nature. The RG condition has been demonstrated also in this case. Finite element method-based simulations, together with an analytical model, clarify the electric field distribution inside the multishell and suggest the opportunity to use this device as a self-enhanced loss compensated multishell, being a favorable scenario for low-threshold SPASER action. Counterintuitively, exceeding the resonant gain amount of molecules in both systems causes a significant drop in the amplitude of the resonance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA