Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Evol Anthropol ; 32(1): 26-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205197

RESUMO

This paper investigates how reticulate evolution contributes to a better understanding of human sociocultural evolution in general, and community formation in particular. Reticulate evolution is evolution as it occurs by means of symbiosis, symbiogenesis, lateral gene transfer, infective heredity, and hybridization. From these mechanisms and processes, we mainly zoom in on symbiosis and we investigate how it underlies the rise of (1) human, plant, animal, and machine interactions typical of agriculture, animal husbandry, farming, and industrialization; (2) diet-microbiome relationships; and (3) host-virome and other pathogen interactions that underlie human health and disease. We demonstrate that reticulate evolution necessitates an understanding of behavioral and cultural evolution at a community level, where reticulate causal processes underlie the rise of synergistic organizational traits.


Assuntos
Plantas , Animais , Humanos , Fenótipo , Plantas/genética
2.
Brain Inform ; 4(2): 123-134, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28337675

RESUMO

Neuronal morphology is extremely diverse across and within animal species, developmental stages, brain regions, and cell types. This diversity is functionally important because neuronal structure strongly affects synaptic integration, spiking dynamics, and network connectivity. Digital reconstructions of axonal and dendritic arbors are thus essential to quantify and model information processing in the nervous system. NeuroMorpho.Org is an established repository containing tens of thousands of digitally reconstructed neurons shared by several hundred laboratories worldwide. Each neuron is annotated with specific metadata based on the published references and additional details provided by data owners. The number of represented metadata concepts has grown over the years in parallel with the increase of available data. Until now, however, the lack of standardized terminologies and of an adequately structured metadata schema limited the effectiveness of user searches. Here we present a new organization of NeuroMorpho.Org metadata grounded on a set of interconnected hierarchies focusing on the main dimensions of animal species, anatomical regions, and cell types. We have comprehensively mapped each metadata term in NeuroMorpho.Org to this formal ontology, explicitly resolving all ambiguities caused by synonymy and homonymy. Leveraging this consistent framework, we introduce OntoSearch, a powerful functionality that seamlessly enables retrieval of morphological data based on expert knowledge and logical inferences through an intuitive string-based user interface with auto-complete capability. In addition to returning the data directly matching the search criteria, OntoSearch also identifies a pool of possible hits by taking into consideration incomplete metadata annotation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA