RESUMO
Nanoparticles (NPs) can be conjugated with diverse biomolecules and employed in biosensing to detect target analytes in biological samples. This proven concept was primarily used during the COVID-19 pandemic with gold-NP-based lateral flow assays (LFAs). Considering the gold price and its worldwide depletion, here we show that novel plasmonic NPs based on inexpensive metals, titanium nitride (TiN) and copper covered with a gold shell (Cu@Au), perform comparable to or even better than gold nanoparticles. After conjugation, these novel nanoparticles provided high figures of merit for LFA testing, such as high signals and specificity and robust naked-eye signal recognition. Since the main cost of Au NPs in commercial testing kits is the colloidal synthesis, our development with the Cu@Au and the laser-ablation-fabricated TiN NPs is exciting, offering potentially inexpensive plasmonic nanomaterials for various bioapplications. Moreover, our machine learning study showed that biodetection with TiN is more accurate than that with Au.
Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Titânio , Nanopartículas Metálicas/química , Titânio/química , Ouro/química , Cobre/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/economia , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Coloide de Ouro/química , SARS-CoV-2/isolamento & purificaçãoRESUMO
Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.
RESUMO
Chirality represents a fundamental characteristic inherent in nature, playing a pivotal role in the emergence of homochirality and the origin of life. While the principles of chirality in organic chemistry are well-documented, the exploration of chirality within inorganic crystal structures continues to evolve. This ongoing development is primarily due to the diverse nature of crystal/amorphous structures in inorganic materials, along with the intricate symmetrical and asymmetrical relationships in the geometry of their constituent atoms. In this review, we commence with a summary of the foundational concept of chirality in molecules and solid states matters. This is followed by an introduction of structural chirality and electronic chirality in three-dimensional and two-dimensional inorganic materials. The construction of chirality in inorganic materials is classified into physical photolithography, wet-chemistry method, self-assembly, and chiral imprinting. Highlighting the significance of this field, we also summarize the research progress of chiral inorganic materials for applications in optical activity, enantiomeric recognition and chiral sensing, selective adsorption and enantioselective separation, asymmetric synthesis and catalysis, and chirality-induced spin polarization. This review aims to provide a reference for ongoing research in chiral inorganic materials and potentially stimulate innovative strategies and novel applications in the realm of chirality.
RESUMO
Quadruplexes formed by guanine derivatives or guanine-rich nucleic acids are involved in metabolism and genetic storage of many living organisms, they are used in DNA nanotechnologies or as biosensors. Since many quadruplex geometries are possible the determination of their structures in aqueous solutions is difficult. Raman optical activity (ROA) can make it easier: For guanosine monophosphate (GMP), we observed a distinct change of the spectra upon its condensation and quadruplex formation. The vibrational bands become more numerous, stronger, and narrower. In particular, a huge ROA signal appears below 200 cm-1. The aggregation can be induced by high concentration, low temperature, or by a metal ion. We focused on well-defined quadruplexes stabilized by potassium, where using molecular dynamics and density functional theory the spectra and particular features related to GMP geometric parameters could be understood. The simulations explain the main experimental trends and confirm that the ROA spectroscopy is sensitive to fine structural details, including guanine base twist in the quadruplex helix.
RESUMO
The electronic origins of the computed optical rotations of the simplest chiral and achiral chemical knots with comparatively simple compositions and large, anticipated magnetoelectric polarizabilities are provided. Linear response theory (LRT) is used to calculate the gyration at 1064â nm of two knotted polyyne chains, topological stereoisomers of cyclo[60]carbon. One isomer is analogous to the trefoil knot with approximate D3 symmetry and the other to the figure eight knot with approximate S4 symmetry. The response in each case can be attributed largely to the magnetic dipole term that arises in a near degenerate E-like excited state. An oriented achiral figure eight knot is as optically active in some directions as the chiral knot in any direction, and its absolute eigenvalues are larger.
RESUMO
In the boundless landscape of scientific exploration, there exists a hidden, yet easily accessible, dimension that has often not only intrigued and puzzled researchers but also provided the key. This dimension is chirality, the property that describes the handedness of objects. The influence of chirality extends across diverse fields of study from the parity violation in electroweak interactions to the extremely large macroscopic systems such as galaxies. In this opinion piece, we will delve into the power of chirality in scientific exploration by examining some examples that, at different scales, demonstrate its role as a key to a better understanding of our world. Our goal is to incite researchers from all fields to seek, implement and utilize chirality in their research. Going this extra mile might be more rewarding than it seems at first glance, in particular with regard to the increasing demand for new functional materials in response to the contemporary scientific and technological challenges we are facing. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
RESUMO
Nonactin is a non-enantiomorphous (S4 symmetric), optically active natural product with a specific rotation of zero in solutions at all frequencies and temperatures. All optically active, non-enantiomorphous natural products have specific rotations of zero as a consequence of the spatial average of bisignate chiroptical (magnetoelectric or gyration) tensors with equal and opposite eigenvalues. Zeros that arise in the spatial average are distinct in principle, though not necessarily in practice, from zeros that arise in optical inactivity-chiroptical tensors with zero values for all elements as in centric molecules. Nonactin would be measurably optically active when oriented. The anisotropy of the optical activity of nonactin and its cation complexes, likewise S4 symmetric, are studied here by computation to emphasize the infelicitous linkage between optical activity and chirality. Computations show that changes in the conformation of the nonactin macrocycle upon complexation principally are responsible for diminishing the computed optical activity; the metals are incidental.
RESUMO
Chirality is an essential geometric property unifying small molecules, biological macromolecules, inorganic nanomaterials, biological microparticles, and many other chemical structures. Numerous chirality measures have attempted to quantify this geometric property of mirror asymmetry and to correlate these measures with physical and chemical properties. However, their utility has been widely limited because these correlations have been largely notional. Furthermore, chirality measures also require prohibitively demanding computations, especially for chiral structures comprised of thousands of atoms. Acknowledging the fundamental problems with quantification of mirror asymmetry, including the ambiguity of sign-variable pseudoscalar chirality measures, we revisit this subject because of the significance of quantifying chirality for quantitative biomimetics and describing the chirality of nanoscale materials that display chirality continuum and scale-dependent mirror asymmetry. We apply the concept of torsion within the framework of differential geometry to the graph theoretical representation of chiral molecules and nanostructures to address some of the fundamental problems and practical limitations of other chirality measures. Chiral gold clusters and other chiral structures are used as models to elaborate a graph-theoretical chirality (GTC) measure, demonstrating its applicability to chiral materials with different degrees of chirality at different scales. For specific cases, we show that GTC provides an adequate description of both the sign and magnitude of mirror asymmetry. The direct correlations with macroscopic properties, such as chiroptical spectra, are enhanced by using the hybrid chirality measures combining parameters from discrete mathematics and physics. Taking molecular helices as an example, we established a direct relation between GTC and optical activity, indicating that this chirality measure can be applied to chiral metamaterials and complex chiral constructs.
RESUMO
Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.
RESUMO
Carotenoids tend to form supramolecular aggregates via non-covalent interactions where the chirality of individual molecules is amplified to the macroscopic level. We show that this can also be achieved for non-chiral carotenoid monomers interacting with polysaccharides. The chirality induction in canthaxanthin (CAX), caused by heparin (HP) and hyaluronic acid (HA), was monitored by chiroptical spectroscopy. Electronic circular dichroism (ECD) and Raman optical activity (ROA) spectra indicated the presence of multiple carotenoid formations, such as H- and J-type aggregates. This is consistent with molecular dynamics (MD) and density functional theory (DFT) simulations of the supramolecular structures and their spectroscopic response.
RESUMO
The diagonal components and the trace of two tensors which account for chiroptical response of the leucoindigo molecule C 16 H 12 N 2 O 2 that is, static anapole magnetizability, and dynamic electric dipole-magnetic dipole polarisability depending on the frequency of impinging light, are a function of the Ï dihedral angle of torsion about the central CC bond, assumed to lie in the y direction of the coordinate system. They vanish for symmetry reasons at Ï = 0 ∘ and Ï = 180 ∘ , corresponding respectively to C 2 v and C 2 h point group symmetries, that is, cis and trans conformers characterized by the presence of molecular symmetry planes. Nonetheless, diagonal components and average value of static anapole polarizability and optical rotation tensors vanish at Ï = 90 ∘ , where leucondigo is unquestionably chiral from the geometrical viewpoint. Vanishing values of the average chiroptical properties have been observed also in the proximity of other Ï angles. Attempts have been made to explain the occurrence of accidental zeros of chiroptical properties in terms of transition frequencies and scalar products appearing in the numerator of their quantum mechanical definitions. Within the electric dipole approximation, the presence of anomalous vanishing values of tensor components of anapole magnetizability and electric-magnetic dipole polarizability is ascribed to physical achirality, arising from the lack of either toroidal or spiral electron flow along the x , y and z directions.
RESUMO
Chiral inorganic quasi-2D perovskites are prepared by self-assembling 3D perovskites in solution for the first time. The quasi-2D perovskite synthesized is a pure-phase perovskite with
RESUMO
Chiroptical activity of achiral crystals is theoretically allowed but very unusual. There is a particularly scarcity of empirical studies on optically active achiral metal-organic frameworks (MOFs). Herein we report an achiral emissive Eu MOF and its chiroptical properties both in the ground and excited states. The framework crystallizes in an achiral space group (Pna21 ) belonging to the polar point group (mm2), where the asymmetric arrangement of racemic trinuclear Eu-oxo clusters is responsible for the optical activity. A pair of circular dichroisms (CD) and circularly polarized luminescence (CPL) peaks with opposite signs were observed for single crystals. Importantly, the luminescence dissymmetry factor can reach up to 1.1×10-3 , which is comparable in magnitude to the value of most of the chiral-linker-bridged MOFs. This work gives the first example of achiral MOFs with CPL response and should be instructive for the discovery of more CPL emitters from racemic MOF family.
RESUMO
The chiral-induced spin selectivity (CISS) effect relates to the spin-selective electron transport through chiral molecules; therefore, the chiral molecules act as spin filters. In past studies, correlation was found between the magnitude of the spin filtering and the intensity of the circular dichroism (CD) spectrum (the first Compton peak) of the molecules. Since the intensity of the CD peak relates to both the magnitude of the electric and magnetic dipole transitions, it was not clear which of these properties correlate with the CISS effect. This work aims at addressing this question. By studying the spin-dependent conduction and the CD spectra of the thiol-functionalized enantiopure binaphthalene (BINAP) and ternaphthalene (TERNAP), we found that both BINAP and TERNAP exhibit a similar spin polarization of 50%, despite the first Compton peak in TERNAP being almost twice as intense as the peak in BINAP. These results can be explained by the similar values of their anisotropy (or dissymmetry) factor, gabs , which is proportional to the magnetic transition dipole moment. Hence, we concluded that the CISS effect is proportional to the transition dipole moment in chiral molecules, namely, to the dissymmetry factor.
RESUMO
This work presents a novel approach for investigating symmetry-breaking processes during crystallization using Mueller matrix polarimetry. By applying this method to the cooling process of NaClO3 solutions, we demonstrate its ability to capture not only the initial and final stages of crystallization but also the intermediate steps and dynamics of the process. This technique provides more comprehensive information and insights into the symmetry-breaking mechanisms involved in crystal formation. Overall, this study highlights the potential of Mueller matrix polarimetry for in situ statistical measurements of the optical rotation and for monitoring the evolution of enantiomeric excesses.
RESUMO
Linear polyynes of the formula C18 H2 (symmetry D∞h ) were bent in silico by progressively introducing CCC angles less than 180°. The bent structures (symmetry C2v ) were then twisted by introducing torsion angles across the CCCC segments by as much as 60°. The gyration tensors of these 19 structures (linear, bent, and twisted) were computed by linear response methods. Bending is massively generative of optical activity in oriented structures, even achiral structures, whereas twisting in conjunction with bending, serves to linearize the molecules and diminish maximally observable optical activity. This computational exercise is intended to unbind the infelicitous linkage of optical activity and chirality, which is only meaningful in isotropic media. Although bent structures are not optically active in solution-the spatial average of the optical activity is necessarily zero-solution measurements that deliver the spatial averages are a special class of measurements, albeit the overwhelmingly most common chiroptical measurements, that prejudice our common understanding of how π-conjugated structures generate gyration. Bending is far more effective than twisting at generating optical activity along some directions for oriented structures. The respective contributions from the transition electric dipole-magnetic dipole polarizability and the transition electric dipole-electric quadrupole polarizability are compared.
RESUMO
The nonresonant optical activity of two highly flexible aliphatic amines, (2R)-3-methyl-2-butanamine (R-MBA) and (2R)-(3,3)-dimethyl-2-butanamine (R-DMBA), has been probed under isolated and solvated conditions to examine the roles of conformational isomerism and to explore the influence of extrinsic perturbations. The optical rotatory dispersion (ORD) measured in six solvents presented uniformly negative rotatory powers over the 320-590 nm region, with the long-wavelength magnitude of chiroptical response growing nearly monotonically as the dielectric constant of the surroundings diminished. The intrinsic specific optical rotation, α λ T (in deg dm-1 [g/mL]-1 ), extracted for ambient vapor-phase samples of R-MBA [-11.031(98) and -2.29 (11)] and R-DMBA [-9.434 (72) and -1.350 (48)] at 355 and 633 nm were best reproduced by counterintuitive solvents of high polarity (yet low polarizability) like acetonitrile and methanol. Attempts to interpret observed spectral signatures quantitatively relied on the linear-response frameworks of density-functional theory (B3LYP, cam-B3LYP, and dispersion-corrected analogs) and coupled-cluster theory (CCSD), with variants of the polarizable continuum model (PCM) deployed to account for the effects of implicit solvation. Building on the identification of several low-lying equilibrium geometries (nine for R-MBA and three for R-DMBA), ensemble-averaged ORD profiles were calculated at T = 300 K by means of the independent-conformer ansatz, which enabled response properties predicted for the optimized structure of each isomer to be combined through Boltzmann-weighted population fractions derived from corresponding relative internal-energy or free-energy values, the latter of which stemmed from composite CBS-APNO and G4 analyses. Although reasonable accord between theory and experiment was realized for the isolated (vapor-phase) species, the solution-phase results were less satisfactory and tended to degrade progressively as the solvent polarity increased. These trends were attributed to solvent-mediated changes in structural parameters and energy metrics for the transition states that separate and putatively isolate the equilibrium conformations supported by the ground electronic potential-energy surface, with the resulting displacement of barrier locations and/or decrease of barrier heights compromising the underlying premise of the independent-conformer ansatz.
RESUMO
2-Amino[2.2]paracyclophane reacts with salicylaldehyde or 2-hydroxyacetophenone to yield imines that then give access to a new series of boranils (8b-d) upon complexation with BF2 . These novel boron-containing compounds display both planar and axial chiralities and were examined experimentally and computationally. In particular, their photophysical and chiroptical properties were studied and compared to newly prepared, simpler boranils (9a-d) exhibiting axial chirality only. Less sophisticated chiral architectures were shown to demonstrate overall stronger circularly polarized luminescence (CPL) activity.
RESUMO
We synthesized a fluorene-bithiophene co-polymer with chiral side chains (cPFT2) and investigated its chiroptical properties via synchotronradiation circular dichroism. We observed that thin films of the polymer display an intense circular dichroism (CD) upon annealing, which is of opposite handedness to the CD reported for similar polyfluorenes bearing the same enantiomeric chiral side chain. We then contrast the properties of this polymer with chiral side chain fluorene homopolymer (cPF) and observe large differences in their thin film morphology. Using photoluminescence spectroscopy, we uncover evidence of polymer chain bending in cPFT2, which is further supported by theoretical calculations, and propose an explanation for the observed inverted optical activity.
RESUMO
Triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) are cyclic peroxides that exhibit atropisomerism resulting from restricted rotation around three peroxide bonds. As a result, one pair of enantiomers with D3 symmetry and another pair of enantiomers with C2 symmetry can be identified. Previous studies, based on mass spectrometry data and computational results, have shown that conformations of TATP with D3 and C2 symmetry can be isolated. Assuming that enantiomer samples of TATP and HMTD can be obtained with sufficient enantiopurity, we investigated their chiroptical properties, namely, optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and Raman optical activity (VROA). ORD curves and VCD spectra are seen to be very similar for D3 - and C2 -symmetric atropisomers with the same overall helicity. Predicted VROA results, however, show significant differences between D3 - and C2 -symmetric atropisomers with the same overall helicity. The D3 -symmetric atropisomer is predicted to exhibit considerably larger magnitude vibrational optical activity signals than the C2 -symmetric atropisomer.