Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Radiat Oncol ; 19(1): 80, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918828

RESUMO

INTRODUCTION: Magnetic resonance guided radiotherapy (MRgRT) allows daily adaptation of treatment plans to compensate for positional changes of target volumes and organs at risk (OARs). However, current adaptation times are relatively long and organ movement occurring during the adaptation process might offset the benefit gained by adaptation. The aim of this study was to evaluate the dosimetric impact of these intrafractional changes. Additionally, a method to predict the extent of organ movement before the first treatment was evaluated in order to have the possibility to compensate for them, for example by adding additional margins to OARs. MATERIALS & METHODS: Twenty patients receiving adaptive MRgRT for treatment of abdominal lesions were retrospectively analyzed. Magnetic resonance (MR) images acquired at the start of adaptation and immediately before irradiation were used to calculate adapted and pre-irradiation dose in OARs directly next to the planning target volume. The extent of organ movement was determined on MR images acquired during simulation sessions and adaptive treatments, and their agreement was evaluated. Correlation between the magnitude of organ movement during simulation and the duration of simulation session was analyzed in order to assess whether organ movement might be relevant even if the adaptation process could be accelerated in the future. RESULTS: A significant increase in dose constraint violations was observed from adapted (6.9%) to pre-irradiation (30.2%) dose distributions. Overall, OAR dose increased significantly by 4.3% due to intrafractional organ movement. Median changes in organ position of 7.5 mm (range 1.5-10.5 mm) were detected within a median time of 17.1 min (range 1.6-28.7 min). Good agreement was found between the range of organ movement during simulation and adaptation (66.8%), especially if simulation sessions were longer and multiple MR images were acquired. No correlation was determined between duration of simulation sessions and magnitude of organ movement. CONCLUSION: Intrafractional organ movement can impact dose distributions and lead to violations of OAR tolerance doses, which impairs the benefit of daily on-table plan adaptation. By application of simulation images, the extent of intrafractional organ movement can be predicted, which possibly allows to compensate for them.


Assuntos
Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Radioterapia Guiada por Imagem/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Neoplasias Abdominais/radioterapia , Neoplasias Abdominais/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Radioterapia de Intensidade Modulada/métodos , Movimento , Fracionamento da Dose de Radiação
2.
Med Phys ; 48(1): 414-426, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164217

RESUMO

PURPOSE: Due to the electron return effect (ERE) during magnetic resonance imaging guided radiotherapy (MRIgRT), rectal gas during pelvic treatments can result in hot spots of over-dosage in the rectal wall. Determining the clinical impact of this effect on rectal toxicity requires estimation of the amount and mobility (and stability) of rectal gas during treatment. We therefore investigated the amount of rectal gas and local inter- and intra-fractional changes of rectal gas in pelvic cancer patients. METHODS: To estimate the volume of gas present at treatment planning, the rectal gas contents in the planning computed tomography (CT) scans of 124 bladder, 70 cervical and 2180 prostate cancer patients were calculated. To estimate inter- and intra-fractional variations in rectal gas, 174 and 131 T2-w MRIs for six cervical and eleven bladder cancer patients were used. These scans were acquired during four scan-sessions (~20-25 min each) at various time-points. Additionally, 258 T2-w MRIs of the first five prostate cancer patients treated using MRIgRT at our center, acquired during each fraction, were analyzed. Rectums were delineated on all scans. The area of gas within the rectum delineations was identified on each MRI slice using thresholding techniques. The area of gas on each slice of the rectum was used to calculate the inter- and intra-fractional group mean, systematic and random variations along the length of the rectum. The cumulative dose perturbation as a result of the gas was estimated. Two approaches were explored: accounting or not accounting for the gas at the start of the scan-session. RESULTS: Intra-fractional variations in rectal gas are small compared to the absolute volume of rectal gas detected for all patient groups. That is, rectal gas is likely to remain stable for periods of 20-25 min. Larger volumes of gas and larger variations in gas volume were observed in bladder cancer patients compared with cervical and prostate cancer patients. For all patients, local cumulative dose perturbations per beam over an entire treatment in the order of 60 % were estimated when gas had not been accounted for in the daily adaption. The calculated dose perturbation over the whole treatment was dramatically reduced in all patients when accounting for the gas in the daily set-up image. CONCLUSION: Rectal gas in pelvic cancer patients is likely to remain stable over the course of an MRIgRT fraction, and also likely to reappear in the same location in multiple fractions, and can therefore result in clinically relevant over-dosage in the rectal wall. The over-dosage is reduced when accounting for gas in the daily adaption.


Assuntos
Neoplasias Pélvicas , Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Masculino , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/radioterapia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reto/diagnóstico por imagem
3.
J Cancer Res Ther ; 15(1): 1-8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880746

RESUMO

PURPOSES: The purpose of this study was to assess the internal rectal movement and to determine the factors related to extensive internal rectal movement using sequential simulation computed tomography (CT) images. MATERIALS AND METHODS: From 2010 to 2015, 96 patients receiving long-course preoperative chemoradiotherapy were included in our retrospective study. The initial simulation CT (Isim-CT) and follow-up simulation CT (Fsim-CT) for a boost were registered according to the isocenters and bony structure. The rectums on Isim-CT and Fsim-CT were compared on four different axial planes as follows: (1) lower pubis symphysis (AXVERYLOW), (2) upper pubis symphysis (AXLOW), (3) superior rectum (AXHIGH), and (4) middle of AXLOW and AXHIGH (AXMID). The involved rectum in the planning target volume was evaluated. The maximal radial distances (MRD), the necessary radius from the end of Isim-CT rectum to cover entire Fsim-CT rectum, and the common area rate (CAR) of the rectum (CAR, (Isim-CT∩Fsim-CT)/(Isim-CT)) were measured. Linear regression tests for the MRDs and logistic regression tests for the CARs were conducted. RESULTS: The mean ± standard deviation (mm) of MRDs and CAR <80% for AXVERYLOW, AXLOW, AXMID, and AXHIGH were 2.3 ± 2.5 and 8.9%, 3.0 ± 3.7 and 17.4%, 4.0 ± 5.2 and 27.1%, and 4.1 ± 5.2 and 25%, respectively. For MRDs and CARs, a higher axial level (AXVERYLOW/AXMID-HIGH, P = 0.018 and P = 0.034, respectively), larger bladder volume (P = 0.054 and P = 0.017, respectively), smaller bowel gas extent (small/marked, P = 0.014 and P = 0.001, respectively), and increased bowel gas change (decrease/increase, both P < 0.001) in rectum were associated with extensive internal rectal movement in multivariate analyses. CONCLUSIONS: As a result of following internal rectal movement through sequential simulation CT, the rectum above the pubis symphysis needs a larger margin, and bladder volume and bowel gas should be closely observed.


Assuntos
Adenocarcinoma/terapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Retais/terapia , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adulto , Idoso , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Terapia Neoadjuvante/efeitos adversos , Terapia Neoadjuvante/métodos , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Reto/diagnóstico por imagem , Reto/efeitos da radiação , Estudos Retrospectivos , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/efeitos da radiação
4.
New Phytol ; 193(4): 1098, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33874359
5.
Ultrasound Med Biol ; 42(7): 1681-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27126242

RESUMO

Respiration-induced movement of abdominal organs hampers the targeting accuracy of non-invasive surgical techniques such as focused ultrasound surgery and radiosurgery. Unaccounted organ movement can result in either under dosage or damage to intervening healthy tissues. The respiration-induced movement is known to be significantly large in kidneys; however, the impact of abnormalities such as tumors and cysts on kidney movement is poorly understood. In this study, we quantified the movement patterns of kidneys in 48 normal and 62 affected kidneys (43 calcified cysts, 11 angiomyolipomas, 4 renal cell carcinomas and 4 polycystic kidneys) using ultrasound and simultaneously tracked the respiratory movement patterns using a stereo camera system. The kidneys were localized from 2-D ultrasound sequences using a template matching technique. The average movements of the right and left kidneys were, respectively, 24.54 ± 6.4 and 17.06 ± 3.66 mm in the superior-inferior and 13.62 ± 3.71 and 9.80 ± 3.32 mm in the transverse directions. Average movement in the superior-inferior direction of normal kidneys was greater than that of affected kidneys for both right (26.9 ± 5.1 vs. 22.6 ± 3.3, p < 0.001) and left (17.8 ± 2.5 vs. 16.1 ± 4.2, p = 0.01) kidneys. On the basis of spatial extent of abnormality, affected kidneys were categorized as category A (<10 mm in 26 patients), category B (10-20 mm in 22 patients) and category C (>20 mm in 14 patients). Compared with normal patients, the extent of movement was significantly reduced in abnormal categories B (p < 0.001) and C (p < 0.001), but the change was not significant in category A (p = 0.04). Hysteresis plots of the kidneys revealed a maximum change of 12.3 mm. The movement patterns of the kidneys also closely correlated with the respiratory movement pattern (Pearson correlation = 0.89 [right] and 0.87 [left]). We expect that the movement pattern analyses and quantification carried out in this study would aid in developing movement adaptive surgical protocols for non-invasive treatment of kidney tumors/cancers.


Assuntos
Nefropatias/diagnóstico por imagem , Nefropatias/fisiopatologia , Rim/diagnóstico por imagem , Rim/fisiopatologia , Respiração , Ultrassonografia/métodos , Adulto , Idoso , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Adulto Jovem
6.
Radiother Oncol ; 112(2): 217-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25216574

RESUMO

Dosimetric intra-fraction uncertainties in MRI-guided brachytherapy were analysed for HR-CTV and OARs. While dose differences were generally small, individual outliers occurred. In contrast to HDR, patients treated with PDR show increased mean rectal dose over time. Re-imaging prior to dose delivery helps to detect unfavorable anatomical changes, and allows for intervention.


Assuntos
Braquiterapia/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Antineoplásicos/administração & dosagem , Quimiorradioterapia , Cisplatino/administração & dosagem , Feminino , Humanos , Estadiamento de Neoplasias , Radiossensibilizantes/administração & dosagem , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/patologia
7.
Open Biomed Eng J ; 7: 109-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339836

RESUMO

For pulmonary applications of Electrical Impedance Tomography (EIT) systems, the electrodes are placed around the chest in a 2D ring, and the images are reconstructed based on the assumptions that the object is rigid and the measured resistivity change in EIT images is only caused by the actual resistivity change of tissue. Structural changes are rarely considered. Previous studies have shown that structural changes which result in tissue/organ and electrode position changes tend to introduce artefacts to EIT images of the thorax. Since EIT reconstruction is an ill-posed inverse problem, any small inaccurate assumptions of object may cause large artefacts in reconstructed images. Accurate information on structure/electrode position changes is a need to understand factors contributing to the measured resistivity changes and to improve EIT reconstruction algorithm. Our previous study using MRI technique showed that chest expansion leads to electrode and tissue/organ movements but not significant as proposed. The accuracy of the measurements by MRI may be limited by its relatively low temporal and spatial resolution. In this study, structure/electrode position changes during respiration cycle in patients who underwent chest CT scans are further investigated. For each patient, sixteen fiduciary markers are equally spaced around the surface, the same as the electrode placement for EIT measurements. A CT scanner with respiration-gated ability is used to acquire images of the thorax. CT thoracic images are retrospectively reconstructed corresponding temporally to specific time periods within respiration cycle (from 0% to 90%, every 10%). The average chest expansions are 2 mm in anterior-posterior and -1.6 mm in lateral directions. Inside tissue/organ move down 9.0±2.5 mm with inspiration of tidal volume (0.54±0.14 liters), ranging from 6 mm to 12 mm. During normal quiet respiration, electrode position changes are smaller than expected. No general patterns of electrode position changes are observed. The results in this study provide guidelines for accommodating the motion that may introduce artefacts to EIT images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA