Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Genes Dev ; 34(1-2): 53-71, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857346

RESUMO

Hippo signaling controls organ size and tumor progression through a conserved pathway leading to nuclear translocation of the transcriptional effector Yki/Yap/Taz. Most of our understanding of Hippo signaling pertains to its cytoplasmic regulation, but how the pathway is controlled in the nucleus remains poorly understood. Here we uncover an evolutionarily conserved mechanism by which CDK7 promotes Yki/Yap/Taz stabilization in the nucleus to sustain Hippo pathway outputs. We found that a modular E3 ubiquitin ligase complex CRL4DCAF12 binds and targets Yki/Yap/Taz for ubiquitination and degradation, whereas CDK7 phosphorylates Yki/Yap/Taz at S169/S128/S90 to inhibit CRL4DCAF12 recruitment, leading to Yki/Yap/Taz stabilization. As a consequence, inactivation of CDK7 reduced organ size and inhibited tumor growth, which could be reversed by restoring Yki/Yap activity. Our study identifies an unanticipated layer of Hippo pathway regulation, defines a novel mechanism by which CDK7 regulates tissue growth, and implies CDK7 as a drug target for Yap/Taz-driven cancer.


Assuntos
Carcinogênese/genética , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Drosophila melanogaster/genética , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/fisiopatologia , Camundongos , Tamanho do Órgão/genética , Fenilenodiaminas/farmacologia , Proteólise , Pirimidinas/farmacologia , Proteínas de Sinalização YAP , Quinase Ativadora de Quinase Dependente de Ciclina
2.
EMBO J ; 42(11): e112126, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919851

RESUMO

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Via de Sinalização Hippo , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Carcinoma Hepatocelular/genética , Proteínas de Sinalização YAP , Neoplasias Hepáticas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
3.
Mol Cell ; 70(4): 573-587.e4, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775577

RESUMO

Apoptosis culminates in the activation of caspase-3, which plays an important role in implementing the cell death program. Here, we reveal a non-apoptotic role of caspase-3 as a key regulator of cell proliferation and organ size. Caspase-3 is specifically activated in the proliferating cells of the sebaceous gland, but does not instruct cell elimination. Deletion or chemical inhibition of caspase-3 diminishes cell proliferation, decreases cell number and reduces sebaceous gland size in vivo. Exploring the underlying mechanism, we demonstrate that α-catenin is cleaved by caspase-3, thus facilitating the activation and nuclear translocation of yes-associated protein (YAP), a vital regulator of organ size. Accordingly, activation of caspase-3 leads to YAP-dependent organ size augmentation. Finally, we show that X-linked inhibitor of apoptosis protein (XIAP) serves as an endogenous feedback antagonist for the caspase-3/YAP signaling module. Taken together, we report here a molecular mechanism wherein the apoptotic machinery is refocused to regulate cell proliferation and orchestrate organ size.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 3/fisiologia , Proliferação de Células , Retroalimentação Fisiológica , Proteínas Inibidoras de Apoptose/fisiologia , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/fisiologia , alfa Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Proteínas de Ciclo Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Fosfoproteínas/genética , Transporte Proteico , Proteínas de Sinalização YAP , alfa Catenina/genética
4.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35574989

RESUMO

Body size varies widely among species, populations and individuals, depending on the environment. Transitioning between proliferation and differentiation is a crucial determinant of final organ size, but how the timing of this transition is established and maintained remains unknown. Using cell proliferation markers and genetic analysis, we show that CHIQUITA1 (CHIQ1) is required to maintain the timing of the transition from proliferation to differentiation in Arabidopsis thaliana. Combining kinematic and cell lineage-tracking studies, we found that the number of actively dividing cells in chiquita1-1 plants decreases prematurely compared with wild-type plants, suggesting CHIQ1 maintains the proliferative capacity in dividing cells and ensures that cells divide a specific number of times. CHIQ1 belongs to a plant-specific gene family of unknown molecular function and genetically interacts with three close members of its family to control the timing of proliferation exit. Our work reveals the interdependency between cellular and organ-level processes underlying final organ size determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas/genética , Humanos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833708

RESUMO

Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.


Assuntos
Proteína Morfogenética Óssea 2 , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
6.
Genes Dev ; 31(2): 197-208, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167503

RESUMO

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas com Domínio LIM/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Ativação Enzimática , Proteínas com Domínio LIM/genética , Estabilidade Proteica
7.
Plant J ; 114(6): 1338-1352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932949

RESUMO

Ethylene-responsive factors (ERFs) have diverse functions in the regulation of various plant developmental processes. Here, we demonstrate the dual role of an Arabidopsis ERF gene, AtERF19, in regulating reproductive meristem activity and flower organ size through the regulation of genes involved in CLAVATA-WUSCHEL (CLV-WUS) and auxin signaling, respectively. We found that AtERF19 stimulated the formation of flower primordia and controlled the number of flowers produced by activating WUS and was negatively regulated by CLV3. 35S::AtERF19 expression resulted in significantly more flowers, whereas 35S::AtERF19 + SRDX dominant-negative mutants produced fewer flowers. In addition, AtERF19 also functioned to control flower organ size by promoting the division/expansion of the cells through activating Small Auxin Up RNA Gene 32 (SAUR32), which positively regulated MYB21/24 in the auxin signaling pathway. 35S::AtERF19 and 35S::SAUR32 resulted in similarly larger flowers, whereas 35S::AtERF19 + SRDX and 35S::SAUR32-RNAi mutants produced smaller flowers than the wild type. The functions of AtERF19 were confirmed by the production of similarly more and larger flowers in 35S::AtERF19 transgenic tobacco (Nicotiana benthamiana) and in transgenic Arabidopsis which ectopically expressed the orchid gene (Nicotiana benthamiana) PaERF19 than in wild-type plants. The finding that AtERF19 regulates genes involved in both CLV-WUS and auxin signaling during flower development significantly expands the current knowledge of the multifunctional evolution of ERF genes in plants. The results presented in this work indicate a dual role for the transcription factor AtERF19 in controlling the number of flowers produced and flower organ size through the regulation of genes involved in CLV-WUS and auxin signaling, respectively. Our findings expand the knowledge of the roles of ERF genes in the regulation of reproductive development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Meristema , Tamanho do Órgão/genética , Flores , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33722901

RESUMO

How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Oryzias/crescimento & desenvolvimento , Receptor IGF Tipo 1/metabolismo , Retina/crescimento & desenvolvimento , Transdução de Sinais , Células-Tronco/fisiologia , Animais , Animais Geneticamente Modificados , Ciclo Celular , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células , Autorrenovação Celular , Fator de Crescimento Insulin-Like I/genética , Neurogênese , Oryzias/embriologia , Oryzias/genética , Receptor IGF Tipo 1/genética , Retina/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Vertebrados
9.
Development ; 148(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061172

RESUMO

Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.


Assuntos
Nadadeiras de Animais/fisiologia , Expressão Ectópica do Gene/fisiologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Nadadeiras de Animais/anatomia & histologia , Animais , Sistemas CRISPR-Cas , Calcineurina/metabolismo , Proliferação de Células , Expressão Ectópica do Gene/genética , Éter , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Tamanho do Órgão , Regeneração/fisiologia , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474246

RESUMO

The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Filogenia , Diploide , Genoma de Planta , Genes de Plantas , Regulação da Expressão Gênica de Plantas
11.
Eur Eat Disord Rev ; 32(4): 784-794, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520705

RESUMO

BACKGROUND & AIMS: Changes in stomach size may impact eating behaviour. A recent study showed gastric dilatation in restrictive eating disorders using computed tomography scans. This study aimed to describe stomach size in the standing position in women with anorexia nervosa (AN). METHODS: Women treated for AN at our institution were retrospectively included if they had undergone upper gastrointestinal radiography (UGR) after the diagnosis of AN. Two control groups (CG1 and CG2) were included, both comprising female patients: CG1 patients were not obese and underwent UGR for digestive symptoms of other aetiologies, and CG2 comprised obese individuals who had UGR before bariatric surgery. A UGR-based Stomach Size Index (SSI), calculated as the ratio of the length of the stomach to the distance between the upper end of the stomach and the top of the iliac crests, was measured in all three groups. Gastromegaly was defined as SSI >1.00. RESULTS: 45 patients suffering from AN (28 with restrictive and 17 with binge/purge subtype), 10 CG1 and 20 CG2 subjects were included in this study. Stomach Size Index was significantly higher in AN (1.27 ± 0.24) than in CG1 (0.80 ± 0.11) and CG2 (0.68 ± 0.09); p < 0.001, but was not significantly different between patients with the restrictive and binge/purge subtypes. Gastromegaly was present in 82.2% of patients with AN and not present in the control groups. In patients with AN, gastromegaly was present in 12/15 patients without digestive symptoms (80.0%) and in 25/30 patients with digestive complaints (83.3%) at time of UGR (p = 0.99). In the AN group, no significant relationship was found between SSI and body mass index. CONCLUSION: Gastromegaly is frequent in AN and could influence AN recovery. This anatomical modification could partially explain the alterations of gastric motility previously reported in AN.


Assuntos
Anorexia Nervosa , Estômago , Humanos , Anorexia Nervosa/diagnóstico por imagem , Feminino , Adulto , Estômago/diagnóstico por imagem , Estômago/patologia , Estudos Retrospectivos , Adulto Jovem , Tamanho do Órgão , Adolescente
12.
Plant J ; 110(4): 1005-1020, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218092

RESUMO

Ubiquitination plays a vital role in modifying protein activity and destiny. Ub-conjugating enzyme E2 is one of the enzymes that participates in this precise process. There are at least 169 E2 proteins in the allotetraploid cotton (Gossypium hirsutum), but their function remains unknown. Here we identify an E2 gene GhUBC2L and show its positive role in cell proliferation and expansion. Complete knock-down of GhUBC2L in cotton resulted in retarded growth and reduced organ size. Conversely, overexpression of GhUBC2L promoted cotton growth, generating enlarged organs in size. Monoubiquitination of H2A and H2B was strongly impaired in GhUBC2L-suppressed cotton but slightly enhanced in GhUBC2L-overexpressed plant. GhUbox8, a U-box type E3 ligase protein, was found to interact with GhUBC2L both in vivo and in vitro, indicating their synergistical function in protein ubiquitination. Furthermore, GhUbox8 was shown to interact with a series of histone proteins, including histone H2A and H2B, indicating its potential monoubiquitination on H2A and H2B. Expression of genes relating to cell cycle and organ development were altered when the expression of GhUBC2L was changed. Our results show that GhUBC2L modulates histone monoubiquitination synergistically with GhUbox8 to regulate the expression of genes involved in organ development and cell cycle, thus controlling organ size in cotton. This research provides new insights into the role of protein ubiquitination in organ size control. Histone monoubiquitination plays an important role in plant development. Here, we identified an E2 enzyme GhUBC2L that modulates histone monoubiquitination synergistically with an E3 ligase GhUbox8 to mediate organ size control in cotton.


Assuntos
Gossypium , Histonas , Gossypium/genética , Gossypium/metabolismo , Histonas/metabolismo , Tamanho do Órgão , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37818893

RESUMO

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Assuntos
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamanho do Órgão/genética , Gigantismo/genética , Locos de Características Quantitativas/genética , Solanum/genética , Frutas/genética
14.
Eur Radiol ; 33(5): 3222-3231, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36640173

RESUMO

OBJECTIVES: Polycystic liver disease (PLD) is characterized by growth of hepatic cysts, causing hepatomegaly. Disease severity is determined using total liver volume (TLV), which can be measured from computed tomography (CT). The gold standard is manual segmentation which is time-consuming and requires expert knowledge of the anatomy. This study aims to validate the commercially available semi-automatic MMWP (Multimodality Workplace) Volume tool for CT scans of PLD patients. METHODS: We included adult patients with one (n = 60) or two (n = 46) abdominal CT scans. Semi-automatic contouring was compared with manual segmentation, using comparison of observed volumes (cross-sectional) and growth (longitudinal), correlation coefficients (CC), and Bland-Altman analyses with bias and precision, defined as the mean difference and SD from this difference. Inter- and intra-reader variability were assessed using coefficients of variation (CV) and we assessed the time to perform both procedures. RESULTS: Median TLV was 5292.2 mL (IQR 3141.4-7862.2 mL) at baseline. Cross-sectional analysis showed high correlation and low bias and precision between both methods (CC 0.998, bias 1.62%, precision 2.75%). Absolute volumes were slightly higher for semi-automatic segmentation (manual 5292.2 (3141.4-7862.2) versus semi-automatic 5432.8 (3071.9-7960.2) mL, difference 2.7%, p < 0.001). Longitudinal analysis demonstrated that semi-automatic segmentation accurately measures liver growth (CC 0.908, bias 0.23%, precision 4.04%). Inter- and intra-reader variability were small (2.19% and 0.66%) and comparable to manual segmentation (1.21% and 0.63%) (p = 0.26 and p = 0.37). Semi-automatic segmentation was faster than manual tracing (19 min versus 50 min, p = 0.009). CONCLUSIONS: Semi-automatic liver segmentation is a fast and accurate method to determine TLV and liver growth in PLD patients. KEY POINTS: • Semi-automatic liver segmentation using the commercially available MMWP volume tool accurately determines total liver volume as well as liver growth over time in polycystic liver disease patients. • This method is considerably faster than manual segmentation through the use of Hounsfield unit settings. • We used a real-life CT set for the validation and showed that the semi-automatic tool measures accurately regardless of contrast used for the CT scan or not, presence of polycystic kidneys, liver volume, and previous invasive treatment for polycystic liver disease.


Assuntos
Hepatopatias , Tomografia Computadorizada por Raios X , Adulto , Humanos , Estudos Transversais , Tomografia Computadorizada por Raios X/métodos , Hepatopatias/diagnóstico por imagem , Reprodutibilidade dos Testes
15.
Eur Radiol ; 33(9): 5924-5932, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37012546

RESUMO

OBJECTIVES: We aimed to evaluate the effect of hepatic steatosis (HS) on liver volume and to develop a formula to estimate lean liver volume correcting the HS effect. METHODS: This retrospective study included healthy adult liver donors who underwent gadoxetic acid-enhanced MRI and proton density fat fraction (PDFF) measurement from 2015 to 2019. The degree of HS was graded at 5% PDFF intervals from grade 0 (no HS; PDFF < 5.5%). Liver volume was measured with hepatobiliary phase MRI using deep learning algorithm, and standard liver volume (SLV) was calculated as the reference lean liver volume. The association between liver volume and SLV ratio with PDFF grades was evaluated using Spearman's correlation (ρ). The effect of PDFF grades on liver volume was evaluated using the multivariable linear regression model. RESULTS: The study population included 1038 donors (mean age, 31 ± 9 years; 689 men). Mean liver volume to SLV ratio increased according to PDFF grades (ρ = 0.234, p < 0.001). The multivariable analysis indicated that SLV (ß = 1.004, p < 0.001) and PDFF grade*SLV (ß = 0.044, p < 0.001) independently affected liver volume, suggesting a 4.4% increase in liver volume per one-point increment in the PDFF grade. PDFF-adjusted lean liver volume was estimated using the formula, liver volume/[1.004 + 0.044 × PDFF grade]. The mean estimated lean liver volume to SLV ratio approximated to one for all PDFF grades, with no significant association with PDFF grades (p = 0.851). CONCLUSION: HS increases liver volume. The formula to estimate lean liver volume may be useful to adjust for the effect of HS on liver volume. KEY POINTS: • Hepatic steatosis increases liver volume. • The presented formula to estimate lean liver volume using MRI-measured proton density fat fraction and liver volume may be useful to adjust for the effect of hepatic steatosis on measured liver volume.


Assuntos
Aprendizado Profundo , Hepatopatia Gordurosa não Alcoólica , Adulto , Masculino , Humanos , Adulto Jovem , Prótons , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Estudos Retrospectivos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética
16.
Proc Natl Acad Sci U S A ; 117(50): 31935-31944, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257577

RESUMO

The stereotyped dimensions of animal bodies and their component parts result from tight constraints on growth. Yet, the mechanisms that stop growth when organs reach the right size are unknown. Growth of the Drosophila wing-a classic paradigm-is governed by two morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Wing growth during larval life ceases when the primordium attains full size, concomitant with the larval-to-pupal molt orchestrated by the steroid hormone ecdysone. Here, we block the molt by genetically dampening ecdysone production, creating an experimental paradigm in which the wing stops growing at the correct size while the larva continues to feed and gain body mass. Under these conditions, we show that wing growth is limited by the ranges of Dpp and Wg, and by ecdysone, which regulates the cellular response to their signaling activities. Further, we present evidence that growth terminates because of the loss of two distinct modes of morphogen action: 1) maintenance of growth within the wing proper and 2) induced growth of surrounding "pre-wing" cells and their recruitment into the wing. Our results provide a precedent for the control of organ size by morphogen range and the hormonal gating of morphogen action.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Ecdisona/metabolismo , Asas de Animais/crescimento & desenvolvimento , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Tamanho do Órgão/genética , Asas de Animais/citologia
17.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069299

RESUMO

Plant architecture and organ size are considered as important traits in crop breeding and germplasm improvement. Although several factors affecting plant architecture and organ size have been identified in rice, the genetic and regulatory mechanisms remain to be elucidated. Here, we identified and characterized the small plant and organ 1 (spo1) mutant in rice (Oryza sativa), which exhibits narrow and rolled leaf, reductions in plant height, root length, and grain width, and other morphological defects. Map-based cloning revealed that SPO1 is allelic with OsCSLD4, a gene encoding the cellulose synthase-like protein D4, and is highly expressed in the roots at the seedling and tillering stages. Microscopic observation revealed the spo1 mutant had reduced number and width in leaf veins, smaller size of leaf bulliform cells, reduced cell length and cell area in the culm, and decreased width of epidermal cells in the outer glume of the grain. These results indicate the role of SPO1 in modulating cell division and cell expansion, which modulates plant architecture and organ size. It is showed that the contents of endogenous hormones including auxin, abscisic acid, gibberellin, and zeatin tested in the spo1 mutant were significantly altered, compared to the wild type. Furthermore, the transcriptome analysis revealed that the differentially expressed genes (DEGs) are significantly enriched in the pathways associated with plant hormone signal transduction, cell cycle progression, and cell wall formation. These results indicated that the loss of SPO1/OsCSLD4 function disrupted cell wall cellulose synthase and hormones homeostasis and signaling, thus leading to smaller plant and organ size in spo1. Taken together, we suggest the functional role of SPO1/OsCSLD4 in the control of rice plant and organ size by modulating cell division and expansion, likely through the effects of multiple hormonal pathways on cell wall formation.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamanho do Órgão , Melhoramento Vegetal , Hormônios/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas
18.
Dev Biol ; 469: 37-45, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022230

RESUMO

How organisms control organ size is not fully understood. We found that Syd/JIP3 is required for proper wing size in Drosophila. JIP3 mutations are associated with organ size defects in mammals. The underlying mechanisms are not well understood. We discovered that Syd/JIP3 inhibition results in a downregulation of the inhibitor of apoptosis protein 1 (Diap1) in the Drosophila wing. Correspondingly, Syd/JIP3 deficient tissues exhibit ectopic cell death and yield smaller wings. Syd/JIP3 inhibition generated similar effects in mammalian cells, indicating a conserved mechanism. We found that Yorkie/YAP stimulates Syd/JIP3 in Drosophila and mammalian cells. Notably, Syd/JIP3 is required for the full effect of Yorkie-mediated tissue growth. Thus Syd/JIP3 regulation of Diap1 functions downstream of Yorkie/YAP to control growth. This study provides mechanistic insights into the recent and perplexing link between JIP3 mutations and organ size defects in mammals, including in humans where de novo JIP3 variants are associated with microcephaly.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Membrana/fisiologia , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Transporte/genética , Drosophila/anatomia & histologia , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Asas de Animais/anatomia & histologia , Proteínas de Sinalização YAP
19.
Development ; 146(24)2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31767619

RESUMO

The respiratory lineage initiates from the specification of NKX2-1+ progenitor cells that ultimately give rise to a vast gas-exchange surface area. How the size of the progenitor pool is determined and whether this directly impacts final lung size remains poorly understood. Here, we show that epithelium-specific inactivation of Mdm2, which encodes an E3 ubiquitin ligase, led to lethality at birth with a striking reduction of lung size to a single vestigial lobe. Intriguingly, this lobe was patterned and contained all the appropriate epithelial cell types. The reduction of size can be traced to the progenitor stage, when p53, a principal MDM2 protein degradation target, was transiently upregulated. This was followed by a brief increase of apoptosis. Inactivation of the p53 gene in the Mdm2 mutant background effectively reversed the lung size phenotype, allowing survival at birth. Together, these findings demonstrate that p53 protein turnover by MDM2 is essential for the survival of respiratory progenitors. Unlike in the liver, in which genetic reduction of progenitors triggered compensation, in the lung, respiratory progenitor number is a key determinant factor for final lung size.


Assuntos
Proliferação de Células/genética , Pulmão/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Mucosa Respiratória/citologia , Células-Tronco/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Contagem de Células , Embrião de Mamíferos , Feminino , Pulmão/citologia , Pulmão/embriologia , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/genética , Gravidez , Proteínas Proto-Oncogênicas c-mdm2/genética , Células-Tronco/citologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
20.
Biol Reprod ; 107(1): 135-147, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35678316

RESUMO

Testis size determination is an important question of reproductive biology. Sertoli cells are known to be a key determinant of mammalian testis size but the underlying molecular mechanisms remain incompletely understood. Previously we showed that highly conserved germ cell RNA-binding proteins, PUMILIO1(PUM1) and PUMILIO2 (PUM2), control mouse organ and body size through translational regulation, but how different cell types of the organs contribute to their organ size regulation has not been established. Here, we report a somatic role of PUM in gonad size determination. PUM1 is highly expressed in the Sertoli cells of the developing testis from embryonic and postnatal mice as well as in germ cells. Removal of Sertoli cell, but not germ cell, Pum1 gene, led to reduced testis size without significantly affecting sperm number or fertility. Knockout of PUM1 target, Cdkn1b, rescued the phenotype of reduced testis size, supporting a key role of Sertoli cell PUM1 mediated Cdkn1b repression in the testis size control. Furthermore, removal of Pum2 or both Pum1 and Pum2 in the Sertoli cells also only affected the testis size, not sperm development, with the biggest size reduction in Pum1/2 double knockout mice. We propose that PUM1 and PUM2 modulate the testis size through their synergistic translational regulation of cell cycle regulators in the Sertoli cell. Further investigation of the ovary or other organs could reveal if PUM-mediated translational control of cell proliferation of the supporting cell represents a general mechanism for organ size modulation.


Assuntos
Proteínas de Ligação a RNA , Células de Sertoli , Testículo , Animais , Ciclo Celular , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA