Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15911-15922, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576690

RESUMO

Through a process called "bioturbation," burrowing macrofauna have altered the seafloor habitat and modified global carbon cycling since the Cambrian. However, the impact of macrofauna on the community structure of microorganisms is poorly understood. Here, we show that microbial communities across bioturbated, but geochemically and sedimentologically divergent, continental margin sites are highly similar but differ clearly from those in nonbioturbated surface and underlying subsurface sediments. Solid- and solute-phase geochemical analyses combined with modeled bioturbation activities reveal that dissolved O2 introduction by burrow ventilation is the major driver of archaeal community structure. By contrast, solid-phase reworking, which regulates the distribution of fresh, algal organic matter, is the main control of bacterial community structure. In nonbioturbated surface sediments and in subsurface sediments, bacterial and archaeal communities are more divergent between locations and appear mainly driven by site-specific differences in organic carbon sources.


Assuntos
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Filogenia , Água do Mar/química , Água do Mar/microbiologia
2.
Arch Microbiol ; 204(9): 553, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960398

RESUMO

Energy crisis and environmental sustainability have attracted global attention to microalgal biofuels. The present study investigated the impact of organic carbon sources on growth and bio-oil accumulation by an oleaginous microalga Desmodesmus subspicatus LC172266 under mixotrophic culture condition. Glucose and glycerol supported higher growth rates and lipid productivities than sucrose, fructose, mannitol and acetate. Each of the organic carbon source tested supported significantly (P < 0.05) higher growth rates and lipid productivities than the photoautotrophic culture (without organic carbon source). The lipid productivity obtained with a mixture of optima concentrations of glucose and glycerol (5.0 gL-1 glycerol + 10.0 gL-1glucose) (0.14875 ± 0.002 g/L/day) was about 25% and 66% higher than the values obtained with only 10.0 gL-1glucose and 5.0 gL-1glycerol, respectively. When a batch culture with 5gL-1glycerol was fed with 0.5 gL-1glucose daily the cell growth and lipid productivity were lower than the values obtained in a batch culture with a mixture of glucose and glycerol. The lipid productivity obtained in a 4-L photobioreactor was 94% (0.217 gL-1 day-1), higher than the value obtained in a flask culture with 10.0 g/Lglucose (0.112 gL-1 day-1) and 46% higher than the value obtained in a flask culture with 5.0 gL-1glycerol (0.086 gL-1 day-1).


Assuntos
Carbono , Microalgas , Biocombustíveis , Biomassa , Glucose , Glicerol , Lipídeos
3.
Appl Microbiol Biotechnol ; 105(18): 6627-6648, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34468802

RESUMO

Mixotrophic bacteria provide a desirable alternative to the use of classical heterotrophic or chemolithoautotrophic bacteria in environmental technology, particularly under limiting nutrients conditions. Their bi-modal ability of adapting to inorganic or organic carbon feed and sulfur, nitrogen, or even heavy metal stress conditions are attractive features to achieve efficient bacterial activity and favorable operation conditions for the environmental detoxification or remediation of contaminated waste and wastewater. This review provides an overview on the state of the art and summarizes the metabolic traits of the most promising and emerging non-model mixotrophic bacteria for the environmental detoxification of contaminated wastewater and waste containing excess amounts of limiting nutrients. Although mixotrophic bacteria usually function with low organic carbon sources, the unusual capabilities of mixotrophic electroactive exoelectrogens and electrotrophs in bioelectrochemical systems and in microbial electrosynthesis for accelerating simultaneous metabolism of inorganic or organic C and N, S or heavy metals are reviewed. The identification of the mixotrophic properties of electroactive bacteria and their capability to drive mono- or bidirectional electron transfer processes are highly exciting and promising aspects. These aspects provide an appealing potential for unearthing new mixotrophic exoelectrogens and electrotrophs, and thus inspire the next generation of microbial electrochemical technology and mixotrophic bacterial metabolic engineering. KEY POINTS: • Mixotrophic bacteria efficiently and simultaneously remove C and N, S or heavy metals. • Exoelectrogens and electrotrophs accelerate metabolism of C and N, S or heavy metals. • New mixotrophic exoelectrogens and electrotrophs should be discovered and exploited.


Assuntos
Metais Pesados , Águas Residuárias , Bactérias/genética , Processos Heterotróficos , Nitrogênio
4.
J Environ Manage ; 244: 40-47, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108309

RESUMO

This study investigated the influence of three different organic carbon sources including sodium acetate (SOD), glucose (GLU), and starch (STAR), on soluble microbial products (SMP), which presumably have dissimilar uptake rates and metabolic pathways, in sequencing batch reactors (SBR) and their subsequent effects on membrane fouling of ultrafiltration (UF). SMP were mainly characterized by fluorescence excitation emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC). SMP produced in SOD-fed SBR showed higher abundances of protein-like fluorescent component and large sized aliphatic biopolymer (BP) than GLU- or STAR-fed counterpart did, while the STAR-based operation resulted in more SMP enriched with humic-like fluorescence. The differences in SMP exerted marked effects on UF membrane fouling as indicated by the highest fouling potential with reversibility shown for the SMP from the SOD-fed reactor. Regardless of the carbon source, BP fraction and protein-like component exhibited the greatest extent of reversible fouling, suggesting that size exclusion plays a critical role. However, notable differences in the reversible fouling propensity of relatively smaller size fractions among the three SBRs signified the possible involvement of chemical interactions as a secondary fouling mechanism and its dependency on different carbon sources. Our results provide a new insight into the roles of carbon sources in the characteristics of SMP in biological treatment systems and their effects on the post-treatment using membrane filtration, which is ultimately beneficial to the optimization of biological treatment design and membrane filtration operation.


Assuntos
Carbono , Ultrafiltração , Reatores Biológicos , Cromatografia em Gel , Membranas Artificiais , Espectrometria de Fluorescência
5.
Water Res ; 233: 119779, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848854

RESUMO

Sediment organic carbon (SeOC) sources with rich information can be used as a "historical archive" reflecting anthropogenic activities in the catchment, which is crucial to carbon management in the watershed. Anthropogenic activities and hydrodynamic conditions significantly influence the river environment and are reflected by the SeOC sources. However, the key drivers of the SeOC source dynamics are ambiguous, which restricts the behavior of regulating the carbon output of the basin. In this study, sediment cores from the lower reach of an inland river were selected to quantify the SeOC sources based on a centennial scale. A partial least squares path model was used to establish the relationship between anthropogenic activities and hydrological conditions with the SeOC sources. Findings showed that the exogenous advantage of SeOC composition was gradually significant (early period: 54.3%; middle period: 81%; later period: 82%) from the bottom layer to the surface layer of the sediments in the lower reach of the Xiangjiang River. Factors related to anthropogenic activities controlled the external input of SeOC (δ13C: r∂ = -0.94, P < 0.001; δ15N: r∂ = -0.66, P < 0.001). Different anthropogenic activities performed different effects. Land use change aggravated soil erosion and brought more terrestrial organic carbon to the downstream. The variation of grassland carbon input was the most obvious (from 33.6% to 18.4%). In contrast, the reservoir construction intercepted upstream sediments, which might have been the main reason for the slow growth of terrestrial organic carbon input in the downstream in the later period. This study provides a specific grafting for the SeOC records - source changes - anthropogenic activities in the lower reach of the river, which provides scientific basis for watershed carbon management.


Assuntos
Efeitos Antropogênicos , Carbono , Carbono/análise , Sedimentos Geológicos , Monitoramento Ambiental , Rios
6.
J Microbiol Biotechnol ; 32(10): 1325-1334, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36224760

RESUMO

Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].


Assuntos
Cianobactérias , Microalgas , Biocombustíveis/análise , Ficobiliproteínas/metabolismo , Acetato de Sódio/metabolismo , Microalgas/metabolismo , Cianobactérias/genética , Biomassa , Ácidos Graxos/metabolismo
7.
Bioresour Technol ; 348: 126804, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35131456

RESUMO

This study researched denitrification performance and mechanism of denitrification biofilm reactor with different HRTs and carbon sources dosages. Experimental group (EG) had better nitrate and COD removal performance than control group (CG) with different HRTs or carbon doses, and the maximum nitrate-to-nitrite transformation ratio (NTR) of them reached 7.91 ± 1.60% and 17.50 ± 1.92%, respectively. Because organic carbon sources were added to the carrier's interior in EG, forming high local concentrations in biofilms and counter-diffusional with nitrate. By contrast, carbon sources and nitrate were provided from the aqueous phase in CG. Thus, the EG system has more active regions of the biofilm than CG. In addition, EG had higher proportions of microorganisms and enzymes related to denitrification and carbon metabolism. The most dominant phylum, genus, and species were Proteobacteria, Thaurea, and Thauera_sp._27, respectively. The transcript of acetyl-CoA synthetase (K01895) and denitrification (M00529) was mainly originated from unclassified_g__Pseudomonas and unclassified_g__Thauera, respectively.


Assuntos
Desnitrificação , Nitratos , Biofilmes , Reatores Biológicos , Carbono , Nitratos/metabolismo , Nitrogênio
8.
Bioresour Technol ; 201: 105-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26642216

RESUMO

Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Carbono/química , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/química , Vanádio/química , Acetatos/química , Bactérias/genética , Bactérias/isolamento & purificação , Citratos/química , Fermentação , Glucose/química , Oxirredução , RNA Ribossômico 16S/genética , Amido/química
9.
3 Biotech ; 6(2): 116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330202

RESUMO

In this study, five Chlorella species (Chlorella vulgaris, Chlorella minutissima, Chlorella pyrenoidosa, Chlorella sp.1 and Chlorella sp.2) were grown in various nutrient medium including BG-11, BBM, Fog's medium and M4N medium for the evolution of biomass and lipid production potential. Among the tested medium, BG-11 was found most economical and efficient medium for all Chlorella species. To see the impact of organic carbon sources on lipid production potential, all microalgae species were also cultured in selected medium (BG-11) with different organic carbon sources like glucose, glycerol, sodium acetate, and sucrose under mixotrophic condition. The results showed that all Chlorella species performs better under mixotrophic condition, but Chlorella vulgaris achieved maximum lipid productivity (3.5 folds higher) in glycerol supplemented culture medium than control medium among all species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA