Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(29): e202406465, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705847

RESUMO

The surrounding hydrogen bond (H-bond) interaction around the active sites plays indispensable functions in enabling the organic electrode materials (OEMs) to fulfill their roles as ion reservoirs in aqueous zinc-organic batteries (ZOBs). Despite important, there are still no works could fully shed its real effects light on. Herein, quinone-based small molecules with a H-bond evolution model has been rationally selected to disclose the regulation and equilibration of H-bond interaction between OEMs, and OEM and the electrolyte. It has been found that only a suitable H-bond interaction could make the OEMs fully liberate their potential performance. Accordingly, the 2,5-diaminocyclohexa-2,5-diene-1,4-dione (DABQ) with elaborately designed H-bond structure exhibits a capacity of 193.3 mAh g-1 at a record-high mass loading of 66.2 mg cm-2 and 100 % capacity retention after 1500 cycles at 5 A g-1. In addition, the DABQ//Zn battery also possesses air-rechargeable ability by utilizing the chemistry redox of proton. Our results put forward a specific pathway to precise utilization of H-bond to liberate the performance of OEMs.

2.
Angew Chem Int Ed Engl ; 63(19): e202319796, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451050

RESUMO

The low specific capacity determined by the limited electron transfer of p-type cathode materials is the main obstruction to their application towards high-performance aqueous zinc-ion batteries (ZIBs). To overcome this challenge, boosting multi-electron transfer is essential for improving the charge storage capacity. Here, as a typical heteroaromatic p-type material, we unveil the unique reversible two-electron redox properties of phenoxazine in the aqueous electrolytes for the first time. The second oxidation process is stabilized in the aqueous electrolytes, a notable contrast to its less reversibility in the non-aqueous electrolytes. A comprehensive investigation of the redox chemistry mechanism demonstrates remarkably stable redox intermediates, including a stable cation radical PNO⋅+ characterized by effective electron delocalization and a closed-shell state dication PNO2+. Meanwhile, the heightened aromaticity contributes to superior structural stability during the redox process, distinguishing it from phenazine, which features a non-equivalent hybridized sp2-N motif. Leveraging these synergistic advantages, the PNO electrodes deliver a high capacity of 215 mAh g-1 compared to other p-type materials, and impressive long cycling stability with 100 % capacity retention over 3500 cycles. This work marks a crucial step forward in advanced organic electrodes based on multi-electron transfer phenoxazine moieties for high-performance aqueous ZIBs.

3.
Chemistry ; 29(29): e202300424, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883370

RESUMO

Given these advantages of widely designable structures and environmentally friendly characteristics, organic electrode materials (OEMs) are considered to be promising electrode materials for alkaline metal-ion batteries. However, their large-scale application is hampered by insufficient specific capacity and rate performance. Here, Fe2+ is coupled to the anhydride molecule NTCDA to form a novel K-storage anode Fe-NTCDA. In this way, the working potential of Fe-NTCDA anode is reduced, which makes it more suitable to be used as an anode material. Meanwhile, the electrochemical performance is significantly improved due to the increase in K-storage sites. Moreover, electrolytes regulation is implemented to optimize the K-storage behavior, resulting into a high specific capacity of 167 mAh/g after 100 cycles at 50 mA/g and 114 mAh/g even at 500 mA/g in the 3 M KFSI/DME electrolytes.

4.
Angew Chem Int Ed Engl ; 62(7): e202216047, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445787

RESUMO

Organic electrode materials have application potential in lithium batteries owing to their high capacity, abundant resources, and structural designability. However, most reported organic cathodes are at oxidized states (namely unlithiated compounds) and thus need to couple with Li-rich anodes. In contrast, lithiated organic cathode materials could act as a Li reservoir and match with Li-free anodes such as graphite, showing great promise for practical full-battery applications. Here we summarize the synthesis, stability, and battery applications of lithiated organic cathode materials, including synthetic methods, stability against O2 and H2 O in air, and strategies to improve comprehensive electrochemical performance. Future research should be focused on new redox chemistries and the construction of full batteries with lithiated organic cathodes and commercial anodes under practical conditions. This Minireview will encourage more efforts on lithiated organic cathode materials and finally promote their commercialization.

5.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296395

RESUMO

All-organic Li-ion batteries appear to be a sustainable and safer alternative to the currently-used Li-ion batteries but their application is still limited due to the lack of organic compounds with high redox potentials toward Li+/Li0. Herein, we report a computational design of nickel complexes and coordination polymers that have redox potentials spanning the full voltage range: from the highest, 4.7 V, to the lowest, 0.4 V. The complexes and polymers are modeled by binding low- and high-oxidized Ni ions (i.e., Ni(II) and Ni(IV)) to redox-active para-benzoquinone molecules substituted with carboxyl- and cyano-groups. It is found that both the nickel ions and the quinone-derived ligands are redox-active upon lithiation. The type of Ni coordination also has a bearing on the redox potentials. By combining the complex of Ni(IV) with 2-carboxylato-5-cyano-1,4-benzoquinones as a cathode and Ni(II)-2,5-dicarboxylato-3,6-dicyano-1,4-benzoquinone coordination polymer as an anode, all-organic Li-ion batteries could be assembled, operating at an average voltage exceeding 3.0 V and delivering a capacity of more than 300 mAh/g.

6.
Small ; 17(25): e2100902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34028987

RESUMO

Aqueous zinc-ion batteries (AZIBs) are regarded as one of the most promising alternative technology to lithium-ion batteries on account of their low flammability and cost-benefits. Among various cathode materials in AZIBs, environment-friendly and sustainable organic electrode materials stand out owing to their structural diversity and tunability. However, their limited rate capability and cycle stability remain the obstacles to their further application in AZIBs. Herein, a mixed cathode design strategy including polymerization and carbon materials hybridization is adopted to assemble high-rate and durable AZIBs. Specifically, a polymer/graphene composite cathode with active carbonyls and secondary amine moieties is prepared to construct high-performance aqueous Zn-organic batteries. Furthermore, a hybrid energy storage mechanism involving dual-ion mechanism is confirmed by various ex situ characterization techniques, providing promising battery chemistry. Thus, this work opens up a new path to high performance AZIBs through a rational cathode design.

7.
Chemistry ; 27(20): 6131-6144, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368629

RESUMO

The integrated advantages of organic electrode materials and potassium metal make the organic potassium-ion batteries (OPIBs) promising secondary batteries. This review summarizes the latest research progress on OPIBs according to the different types of electrode materials (namely, organic small molecules compounds, polymers, and frameworks (metal-organic frameworks (MOFs), covalent organic frameworks (COFs)). Additionally, the research prospects and outlook for OPIBs are also provided.

8.
Proc Natl Acad Sci U S A ; 115(9): 2004-2009, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440381

RESUMO

Organic compounds are desirable for sustainable Li-ion batteries (LIBs), but the poor cycle stability and low power density limit their large-scale application. Here we report a family of organic compounds containing azo group (N=N) for reversible lithiation/delithiation. Azobenzene-4,4'-dicarboxylic acid lithium salt (ADALS) with an azo group in the center of the conjugated structure is used as a model azo compound to investigate the electrochemical behaviors and reaction mechanism of azo compounds. In LIBs, ADALS can provide a capacity of 190 mAh g-1 at 0.5 C (corresponding to current density of 95 mA g-1) and still retain 90%, 71%, and 56% of the capacity when the current density is increased to 2 C, 10 C, and 20 C, respectively. Moreover, ADALS retains 89% of initial capacity after 5,000 cycles at 20 C with a slow capacity decay rate of 0.0023% per cycle, representing one of the best performances in all organic compounds. Superior electrochemical behavior of ADALS is also observed in Na-ion batteries, demonstrating that azo compounds are universal electrode materials for alkali-ion batteries. The highly reversible redox chemistry of azo compounds to alkali ions was confirmed by density-functional theory (DFT) calculations. It provides opportunities for developing sustainable batteries.

9.
Small ; 16(3): e1906462, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31867886

RESUMO

Lithium primary batteries are still widely used in military, aerospace, medical, and civilian applications despite the omnipresence of rechargeable Li-ion batteries. However, these current primary chemistries are exclusively based on inorganic materials with high cost, low energy density or severe safety concerns. Here, a novel lithium-organic primary battery chemistry that operates through a synergetic reduction of 9,10-anthraquinone (AQ) and fluoroethylene carbonate (FEC) is reported. In FEC-presence, the equilibrium between the carbonyl and enol structures is disabled, and replaced by an irreversible process that corresponds to a large capacity along with methylene and inorganic salts (such as LiF, Li2 CO3 ) generated as products. This irreversible chemistry of AQ yields a high energy density of 1300 Wh/(kg of AQ) at a stable discharge voltage platform of 2.4 V as well as high rate capability (up to 313 mAh g-1 at a current density of 1000 mA g-1 ), wide temperature range of operation (-40 to 40 °C) and low self-discharge rate. Combined with the advantages of low toxicity, facile and diverse synthesis methods, and easy accessibility of AQ, Li-organic primary battery chemistry promises a new battery candidate for applications that requires low cost, high environmental friendliness, and high energy density.

10.
Angew Chem Int Ed Engl ; 59(42): 18322-18333, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32329546

RESUMO

Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+ , Li+ , Na+ , K+ , Zn2+ , Mg2+ , and Ca2+ , and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.

11.
Angew Chem Int Ed Engl ; 57(11): 2879-2883, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29378088

RESUMO

Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g-1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g-1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na+ . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs.

12.
Angew Chem Int Ed Engl ; 54(47): 13947-51, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26411505

RESUMO

In spite of recent progress, there is still a lack of reliable organic electrodes for Li storage with high comprehensive performance, especially in terms of long-term cycling stability. Herein, we report an ideal polymer electrode based on anthraquinone, namely, polyanthraquinone (PAQ), or specifically, poly(1,4-anthraquinone) (P14AQ) and poly(1,5-anthraquinone) (P15AQ). As a lithium-storage cathode, P14AQ showed exceptional performance, including reversible capacity almost equal to the theoretical value (260 mA h g(-1); >257 mA h g(-1) for AQ), a very small voltage gap between the charge and discharge curves (2.18-2.14=0.04 V), stable cycling performance (99.4% capacity retention after 1000 cycles), and fast-discharge/charge ability (release of 69% of the low-rate capacity or 64% of the energy in just 2 min). Exploration of the structure-performance relationship between P14AQ and related materials also provided us with deeper understanding for the design of organic electrodes.

13.
Small Methods ; 8(7): e2301301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38185796

RESUMO

Organic cathode materials for aqueous rechargeable zinc batteries (ARZBs) are rapidly gaining prominence, while the exploration of compounds with affordable synthesis, satisfactory electrochemical performance, and understandable mechanisms still remains challenging. In this study, 6,8,15,17-tetraaza-heptacene-5,7,9,14,16,18-hexaone (TAHQ) as an easily synthesized organic cathode material with novel quinone/pyrazine alternately conjugated molecule structure is presented. This organic electrode exhibits good capacity with highly reversible redox reactions, and the influence of multi-active structures on the Zn2+/H+ loading behavior is systematically investigated by ex situ spectroscopy, electrochemical tests, and computation. Both experimental and theoretical studies effectively address the Zn2+/H+ intercalation/deintercalation kinetics. Benefitting from the fused active functionalities, the assembled Zn//TAHQ battery displays a maximum discharge specific capacity of 254.3 mAh g-1 at 0.5 A g-1, and it maintains remarkable cycle performance with 71% capacity retention after 1000 cycles under 5 A g-1.

14.
ChemSusChem ; : e202301847, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727018

RESUMO

Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs. BDTTS has a large rigid π-conjugated planar structure, which may reduce solubility in the electrolyte, meanwhile facilitating charge transporting. Experimental results and theoretical calculations both support that apart from the four carbonyl groups, the sulfur atoms on tetrathiafulvalene also provide additional active sites during the discharge/charge process. Therefore, the additional active sites can well compensate for the capacity loss caused by the large molecular weight. The as-synthesized BDTTS electrode renders an excellent capacity of 230 mAh g-1 at a current density of 50 mA g-1 and an excellent long-life performance of 128 mAh g-1 at 2 C after 500 cycles. This work enriches the study on organic electrodes for high-performance SIBs and paves the way for further development and utilization of organic electrodes.

15.
ChemSusChem ; 17(6): e202301586, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38168109

RESUMO

Organic electrode materials (OEMs) have been well developed in recent years. However, the practical applications of OEMs have not been paid sufficient attention. The concept here focused on one of the essential aspects for practical applications, i. e., high mass loading of active materials. This paper summarizes the challenges posed by high-mass loading of active materials in organic batteries and discusses the possible solutions in terms of organic electrode materials, conductive additives, electrode structures, and electrolytes or battery systems. We hope this concept can stimulate more attention to practical applications of organic batteries towards industry from lab.

16.
Sci Bull (Beijing) ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39181787

RESUMO

Organic electrode materials (OEMs) have attracted significant attention for use in aqueous zinc-ion batteries (AZIBs) because of their abundant resources and flexible designability. However, the development of high-performance OEMs is strongly hindered by their high solubility, poor conductivity, sluggish ion diffusion kinetics, and difficult coordination toward Zn2+. Herein, inspired by fabric crafts, we have designed a robust polymer fabric through the iterative evolution of the building blocks from point to line and plane. The evolution from point to line could not only improve the structural stability and electrical conductivity but also adjust the active site arrangement to enable the storage of Zn2+. In addition to further boosting the aforementioned properties, the evolution from line to plane could also facilitate the construction of noninterference channels for ion migration. Accordingly, the poly(1,4,5,8-naphthalenetetracarboxylic dianhydride/2,3,5,6-tetraaminocyclohexa-2,5-diene-1,4-dione) (PNT) polymer fabric has the most enhanced structural stability, optimized active site arrangement, improved electrical conductivity, and suitable ion channels, resulting in a record-high capacity retention of 96% at a high mass loading of 56.9mg cm-2 and a stable cycle life of more than 20,000 cycles at 150C (1C=200 mA g-1) in AZIBs. In addition, PNT exhibits universality for a wide range of ions in organic electrolyte systems, such as Li/Na/K-ion batteries. Our iterative design of polymer fabric cathode has laid the foundation for the development of advanced OEMs to promote the performance of metal-ion batteries.

17.
Adv Mater ; 36(33): e2405747, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38898683

RESUMO

To meet the growing demand for energy storage, lithium-ion batteries (LIBs) with fast charging capabilities has emerged as a critical technology. The electrode materials affect the rate performance significantly. Organic electrodes with structural flexibility support fast lithium-ion transport and are considered promising candidates for fast-charging LIBs. However, it is a challenge to create organic electrodes that can cycle steadily and reach high energy density in a few minutes. To solve this issue, accelerating the transport of electrons and lithium ions in the electrode is the key. Here, it is demonstrated that a ferrocene-based polymer electrode (Fc-SO3Li) can be used as a fast-charging organic electrode for LIBs. Thanks to its molecular architecture, LIBs with Fc-SO3Li show exceptional cycling stability (99.99% capacity retention after 10 000 cycles) and reach an energy density of 183 Wh kg-1 in 72 seconds. Moreover, the composite material through in situ polymerization with Fc-SO3Li and 50 wt % carbon nanotube (denoted as Fc-SO3Li-CNT50) achieved optimized electron and ion transport pathways. After 10 000 cycles at a high current density of 50C, it delivered a high energy density of 304 Wh kg-1. This study provides valuable insights into designing cathode materials for LIBs that combine high power and ultralong cycle life.

18.
ACS Appl Mater Interfaces ; 16(5): 5937-5942, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272466

RESUMO

We present the investigation of 1,2,4,5-tetrazine derivatives as low-cost and synthetically modular organic electrode materials in rechargeable aqueous Zn-ion batteries (AZIBs). The substituents at the 3,6-positions of tetrazine were found to be critical for cycling stability. While heteroatom substituents (chloro, methoxy, and pyrazole) lead to the rapid decomposition of electrode materials in the electrolyte, the installation of phenyl groups enhances the cycling stability via π-π stacking. Spectroscopic characterization suggests a cooperative Zn2+ and H+ insertion mechanism. This unique cooperativity of Zn2+ and H+ leads to a steady discharge plateau in contrast to the undesirable sloping voltage profile typically observed in Zn-organic batteries.

19.
Chem Asian J ; 18(16): e202300439, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37369818

RESUMO

Organic polymers have been considered reliable candidates for lithium storage due to their high capacity and lack of volume expansion. Compared with other organic polymers, polyimide has become a very promising electrode material for lithium-ion batteries (LIBs) because of its easy synthesis, customizable structure and structural stability. A large number of studies have confirmed that the benzene ring structure of polyimide has strong lithium storage capacity as an anode material. Hence, we designed and synthesized polyimide organic polymer (PBPAQ) for the first time. The unique spherical flower structure of this material enhances the interaction between the electrode material and the electrolyte by increasing the contact area. The PBPAQ anode has a specific discharge capacity of 738 mAh g-1 after 100 cycles at 0.1 A g-1 . The excellent lithium storage performance of this material laid a foundation for the research of the anode of LIBs in the future.

20.
ChemSusChem ; 16(9): e202202358, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732888

RESUMO

Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA