Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2305763120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015845

RESUMO

Marine dissolved organic nitrogen (DON) is one of the planet's largest reservoirs of fixed N, which persists even in the N-limited oligotrophic surface ocean. The vast majority of the ocean's total DON reservoir is refractory (RDON), primarily composed of low molecular weight (LMW) compounds in the subsurface and deep sea. However, the composition of this major N pool, as well as the reasons for its accumulation and persistence, are not understood. Past characterization of the analytically more tractable, but quantitatively minor, high molecular weight (HMW) DON fraction revealed a functionally simple amide-dominated composition. While extensive work in the past two decades has revealed enormous complexity and structural diversity in LMW dissolved organic carbon, no efforts have specifically targeted LMW nitrogenous molecules. Here, we report the first coupled isotopic and solid-state NMR structural analysis of LMW DON isolated throughout the water column in two ocean basins. Together these results provide a first view into the composition, potential sources, and cycling of this dominant portion of marine DON. Our data indicate that RDON is dominated by 15N-depleted heterocyclic-N structures, entirely distinct from previously characterized HMW material. This fundamentally new view of marine DON composition suggests an important structural control for RDON accumulation and persistence in the ocean. The mechanisms of production, cycling, and removal of these heterocyclic-N-containing compounds now represents a central challenge in our understanding of the ocean's DON reservoir.

2.
Arch Microbiol ; 206(8): 351, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008112

RESUMO

The heterotrophic nitrification aerobic denitrification bacteria (HNDS) can perform nitrification and denitrification at the same time. Two HNDS strains, Achromobacter sp. HNDS-1 and Enterobacter sp. HNDS-6 which exhibited an amazing ability to solution nitrogen (N) removal have been successfully isolated from paddy soil in our lab. When peptone or ammonium sulfate as sole N source, no significant difference in gene expression related to nitrification and denitrification of the strains was found according to the transcriptome analysis. The expression of phosphomethylpyrimidine synthase (thiC), ABC transporter substrate-binding protein, branched-chain amino acid ABC transporter substrate-binding protein, and RNA polymerase (rpoE) in HNDS-1 were significantly upregulated when used peptone as N source, while the expression of exopolysaccharide production protein (yjbE), RNA polymerase (rpoC), glutamate synthase (gltD) and ABC-type branched-chain amino acid transport systems in HNDS-6 were significantly upregulated. This indicated that these two strains are capable of using organic N and converting it into NH4+-N, then utilizing NH4+-N to synthesize amino acids and proteins for their own growth, and strain HNDS-6 can also remove NH4+-N through nitrification and denitrification.


Assuntos
Desnitrificação , Perfilação da Expressão Gênica , Nitrificação , Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Processos Heterotróficos , Aerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Achromobacter/metabolismo , Achromobacter/genética , Achromobacter/isolamento & purificação , Transcriptoma , Regulação Bacteriana da Expressão Gênica
3.
Microb Cell Fact ; 23(1): 243, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251992

RESUMO

The influence of talc microparticles on metabolism and morphology of S. rimosus at various initial organic nitrogen concentrations was investigated. The shake flask cultivations were conducted in the media with yeast extract (nitrogen source) concentration equal to 1 g YE L- 1 and 20 g YE L- 1. Two talc microparticle concentrations of 5 g TALC L- 1 and 10 g TALC L- 1 were tested in microparticle-enhanced cultivation (MPEC) runs. A high nitrogen concentration of 20 g YE L- 1 promoted the development of small agglomerates (pellets) of projected area lower than 105 µm2 and dispersed pseudohyphae. A low nitrogen concentration of 1 g YE L- 1 led to the limitation of S. rimosus growth and, in consequence, the development of the smaller number of large pseudohyphal agglomerates (pellets) of projected area higher than 105 µm2 compared to the culture containing a high amount of nitrogen source. In both cases talc microparticles were embedded into pellets and caused the decrease in their sizes. The lower amount of talc (5 g TALC L- 1) usually caused the weaker effect on S. rimosus morphology and metabolite production than the higher one. This correlation between the microparticles effect on morphology and metabolism of S. rimosus was especially noticeable in the biosynthesis of oxytetracycline, 2-acetyl-2-dicarboxamide oxytetracycline (ADOTC) and spinoxazine A. Compared to the control run, in MPEC their levels increased 4-fold, 5-fold and 1.6-fold respectively. The addition of talc also improved the production of 2-methylthio-cis-zeatin, lorneic acid J and milbemycin A3.


Assuntos
Nitrogênio , Streptomyces , Nitrogênio/metabolismo , Streptomyces/metabolismo , Streptomyces/crescimento & desenvolvimento , Talco/metabolismo , Meios de Cultura/química , Metabolismo Secundário
4.
Environ Sci Technol ; 58(6): 2870-2880, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38181504

RESUMO

Researchers and engineers are committed to finding effective approaches to reduce dissolved organic nitrogen (DON) to meet more stringent effluent total nitrogen limits and minimize effluent eutrophication potential. Here, we provided a promising approach by adding specific doses of 2-hydroxy-1,4-naphthoquinone (HNQ) to postdenitrification bioreactors. This approach of adding a small dosage of 0.03-0.1 mM HNQ effectively reduced the concentrations of DON in the effluent (ANOVA, p < 0.05) by up to 63% reduction of effluent DON with a dosing of 0.1 mM HNQ when compared to the control bioreactors. Notably, an algal bioassay indicated that DON played a dominant role in stimulating phytoplankton growth, thus effluent eutrophication potential in bioreactors using 0.1 mM HNQ dramatically decreased compared to that in control bioreactors. The microbe-DON correlation analysis showed that HNQ dosing modified the microbial community composition to both weaken the production and promote the uptake of labile DON, thus minimizing the effluent DON concentration. The toxic assessment demonstrated the ecological safety of the effluent from the bioreactors using the strategy of HNQ addition. Overall, HNQ is a promising redox mediator to reduce the effluent DON concentration with the purpose of meeting low effluent total nitrogen levels and remarkably minimizing effluent eutrophication effects.


Assuntos
Naftoquinonas , Eliminação de Resíduos Líquidos , Águas Residuárias , Matéria Orgânica Dissolvida , Nitrogênio/análise , Eutrofização
5.
Environ Sci Technol ; 58(10): 4648-4661, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38324528

RESUMO

With global eutrophication and increasingly stringent nitrogen discharge restrictions, dissolved organic nitrogen (DON) holds considerable potential to upgrade advanced wastewater denitrification because of its large contribution to low-nitrogen effluents and stronger stimulation effect for algae. Here, we show that DON from the postdenitrification systems dominates effluent eutrophication potential under different carbon sources. Methanol resulted in significantly lower DON concentrations (0.84 ± 0.03 mg/L) compared with the total nitrogen removal-preferred acetate (1.11 ± 0.02 mg/L) (p < 0.05, ANOVA). With our well-developed mathematical model (R2 = 0.867-0.958), produced DON instead of shared (persist in both influent and effluent) and/or removed DON was identified as the key component for effluent DON variation (Pearson r = 0.992, p < 0.01). The partial least-squares path modeling analysis showed that it is the microbial community (r = 0.947, p < 0.01) rather than the predicted metabolic functions (r = 0.040, p > 0.1) that affected produced DON. Carbon sources rebuild the microorganism-DON interaction by affecting the structure of microbial communities with different abilities to generate and recapture produced DON to finally regulate effluent DON. This study revalues the importance of carbon source selection and overturns the current rationality of pursuing only the total nitrogen removal efficiency by emphasizing DON.


Assuntos
Desnitrificação , Águas Residuárias , Matéria Orgânica Dissolvida , Carbono , Nitrogênio/análise , Nitrogênio/química , Eliminação de Resíduos Líquidos/métodos
6.
Environ Res ; 263(Pt 2): 120117, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374751

RESUMO

Glaciers play key roles in capturing, storing, and transforming global carbon and nitrogen, thereby contributing markedly to their cycles. However, an integrated mechanistic approach is still lacking regarding glacier's primary producers (PP), in terms of stable dissolved inorganic carbon isotope (δ13C-DIC) and its relationship with dissolved carbon and nitrogen transformation d ynamic changes/cycling. Here, we sampled waters from glaciers, streams, tributaries, and the Indus River (IR) mainstream in the Upper IR Basin, Western Himalaya. Dissolved organic matter (DOM) appears to increase, on average, by ∼2.5-23.4% with fluctuations when passing from glaciers to streams-tributaries-IR mainstream (the upper and lower parts, respectively) continuum, implying that DOM originates from glaciers PP and is subsequently degraded. The corresponding fluctuations are observed for fluorescent DOM (FDOM), dissolved organic nitrogen (8.0-106.8%), NO3--N (-13.5/+16.6%), NH4+-N (-8.8/+13.0%), and NO2--N (70.7-217.5%). These variations are associated with overall DOM/FDOM transformations, with the production of ending byproducts (e.g. CO2/DIC). The δ13C-DIC values fluctuated from glaciers (-5.3 ± 2.5‰) to streams (-4.4 ± 2.1‰), tributaries (-4.3 ± 1.6‰), and IR mainstream (-4.2 ± 1.3‰). The δ13C-DIC data are consistent with C transformations that involve lighter CO2 emission into the atmosphere, whereas highly depleted DIC/CO2 is the signature of DOM degradation after its fresh production from glaciers PP which originated by photosynthetic activities (e.g. uptake/sink of atmospheric CO2: -8.4‰). Finally, glacier-fed meltwaters would simultaneously contribute to the biogeochemical characteristics of downward margins and specific ecosystems (lake/pond/groundwater/hot springs) via transformation dynamics/cycling of dissolved C and N with high photo/microbial lability. Our results highlight the substantial contribution of western Himalayan glaciers-derived DOM to the global C and N cycles.

7.
Environ Res ; 262(Pt 2): 119900, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233026

RESUMO

The presence of organic matter in sludge plays a significant role in sludge dewatering, anaerobic sludge digestion, resource (i.e., protein) recovery and pollutants removal (i.e., heavy metals) from sludge, as well as post-application of sludge liquid and solid digestate. This study summarized the current knowledge on using liquid chromatography organic carbon detection and organic nitrogen detection (LC-OCD-OND) for characterization and quantification of organic matter in sludge samples related with sludge treatment processes by fractionating organic matter into biopolymers, building blocks, humic substances, low molecular weight (LMW) acids, low LMW neutrals, and inorganic colloids. In addition, the fate, interaction, removal, and degradation of these fractions in different sludge treatment processes were summarized. A standardized extraction procedure for organic components in different extracellular polymeric substances (EPS) layers prior to the LC-OCD-OND analysis is highly recommended for future studies. The analysis of humic substances using the LC-OCD-OND analysis in sludge samples should be carefully conducted. In conclusion, this study not only provides a theoretical foundation and technical guidance for future experiments and practices in characterizing sludge organic matter using LC-OCD-OND, but also serves as a valuable resource for consulting engineers and other professionals involved in sludge treatment.

8.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891779

RESUMO

In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.


Assuntos
Gases , Gases/química , Termodinâmica , Prótons , Nitrogênio/química , Compostos Orgânicos/química , Teoria Quântica
9.
J Environ Manage ; 356: 120601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518488

RESUMO

The substantial release of NH3 during composting leads to nitrogen (N) losses and poses environmental hazards. Additives can mitigate nitrogen loss by adsorbing NH3/NH4, adjusting pH, and enhancing nitrification, thereby improving compost quality. Herein, we assessed the effects of combining bacterial inoculants (BI) (1.5%) with tricalcium phosphate (CA) (2.5%) on N retention, organic N conversion, bacterial biomass, functional genes, network patterns, and enzyme activity during kitchen waste (KW) composting. Results revealed that adding of 1.5%/2.5% (BI + CA) significantly (p < 0.05) improved ecological parameters, including pH (7.82), electrical conductivity (3.49 mS/cm), and N retention during composting. The bacterial network properties of CA (265 node) and BI + CA (341 node) exhibited a substantial niche overlap compared to CK (210 node). Additionally, treatments increased organic N and total N (TN) content while reducing NH4+-N by 65.42% (CA) and 77.56% (BI + CA) compared to the control (33%). The treatments, particularly BI + CA, significantly (p < 0.05) increased amino acid N, hydrolyzable unknown N (HUN), and amide N, while amino sugar N decreased due to bacterial consumption. Network analysis revealed that the combination expanded the core bacterial nodes and edges involved in organic N transformation. Key genes facilitating nitrogen mediation included nitrate reductase (nasC and nirA), nitrogenase (nifK and nifD), and hydroxylamine oxidase (hao). The structural equation model suggested that combined application (CA) and microbial inoculants enhance enzyme activity and bacterial interactions during composting, thereby improving nitrogen conversion and increasing the nutrient content of compost products.


Assuntos
Inoculantes Agrícolas , Fosfatos de Cálcio , Compostagem , Solo/química , Esterco , Bactérias/genética , Nitrogênio/análise
10.
J Environ Manage ; 352: 120099, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38232598

RESUMO

Reservoirs are vital to meet the ever-increasing demands for freshwater in a warming climate. Dissolved organic matter (DOM) represents an important pool of carbon and can be a major concern in drinking water sources. However, insights into DOM dynamics in temperate, semi-arid reservoirs remain limited. Therefore, we investigated the variations in DOM properties in Lake Diefenbaker, a large reservoir on the Canadian Prairies, by analyzing eight years of DOM concentrations and composition through linear mixed effect modeling. Contrary to expectations, reservoir dissolved organic carbon (DOC) concentration showed no correlation with inflow from the South Saskatchewan River (p = 0.12), while dissolved organic nitrogen (DON) increased with decreasing inflow (p = 0.002). DOM optical indices (SUVA254 and E4:E6 ratio) and DOC:DON ratio revealed a pronounced influence of inflow on reservoir DOM composition (p < 0.001), i.e., allochthonous characteristics increased with increasing flow, and autochthonous characteristics increased with declining flow. Travel time corrected comparison of approximately the same water parcel along the reservoir length revealed that increasing water residence time in downstream regions led to a significant transformation in DOM composition, favoring autochthonous characteristics (mean SUVA254 reduced by 0.52 L mg-C-1 m-1, and the E4:E6 and spectral slope ratio increased by 1.6 and 0.06, respectively). Autochthonous DOC inputs likely offset the allochthonous DOC losses, which resulted in a relatively stable DOC concentration throughout the reservoir (mean 3.7 mg L-1). Additionally, the effect of a large aquaculture operation on reservoir DOM properties was investigated, but no effect was detected. The results have significant implications for managing large river-reservoirs. Autochthonous DOM poses challenges to water processing, necessitating monitoring of DOM composition for reservoir drinking water quality. Insights on climate-induced changes in DOM properties will also assist with understanding changes to habitat conditions and contaminant transport.


Assuntos
Matéria Orgânica Dissolvida , Água Potável , Monitoramento Ambiental/métodos , Canadá , Lagos
11.
J Environ Sci (China) ; 138: 62-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135425

RESUMO

Organic nitrogen (ON) compounds play a significant role in the light absorption of brown carbon and the formation of organic aerosols, however, the mixing state, secondary formation processes, and influencing factors of ON compounds are still unclear. This paper reports on the mixing state of ON-containing particles based on measurements obtained using a high-performance single particle aerosol mass spectrometer in January 2020 in Guangzhou. The ON-containing particles accounted for 21% of the total detected single particles, and the particle count and number fraction of the ON-containing particles were two times higher at night than during the day. The prominent increase in the content of ON-containing particles with the enhancement of NOx mainly occurred at night, and accompanied by high relative humidity and nitrate, which were associated with heterogeneous reactions between organics and gaseous NOx and/or NO3 radical. The synchronous decreases in ON-containing particles and the mass absorption coefficient of water-soluble extracts at 365 nm in the afternoon may be associated with photo-bleaching of the ON species in the particles. In addition, the positive matrix factorization analysis found five factors dominated the formation processes of ON particles, and the nitrate factor (33%) mainly contributed to the production of ON particles at night. The results of this study provide unique insights into the mixing states and secondary formation processes of the ON-containing particles.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Nitratos/análise , Monitoramento Ambiental , China , Compostos Orgânicos/análise , Aerossóis/análise
12.
New Phytol ; 238(2): 845-858, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702619

RESUMO

Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.


Assuntos
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Quitina/metabolismo , Árvores/metabolismo , Florestas , Genômica , Solo
13.
Genome ; 66(1): 11-20, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395476

RESUMO

Pseudomonas furukawaii ZS1, isolated from grass carp (Ctenopharyngodon idellus) culture water, exhibits efficient aerobic nitrate reduction without nitrite accumulation; however, the molecular pathway underlying this aerobic nitrate reduction remains unclear. In this study, we constructed a complete genome map of P. furukawaii ZS1 and performed a comparative genomic analysis with a reference strain. The results showed that P. furukawaii ZS1 genome was 6 026 050 bp in size and contained 5427 predicted protein-coding sequences. The genome contained all the necessary genes for the dissimilatory nitrate reduction to ammonia pathway but lacked those for the assimilatory nitrate reduction pathway; additionally, genes that convert ammonia to organic nitrogen were also identified. The presence of putative genes associated with the nitrogen and oxidative phosphorylation pathways implied that ZS1 can perform respiration and nitrate reduction simultaneously under aerobic conditions, so that nitrite is rapidly consumed for detoxication by denitrification. The aim of this study is to indicate the great potential of strain ZS1 for future full-scale applications in aquaculture. This work provided insights at the molecular level on the nitrogen metabolic pathways in Pseudomonas species. The understanding of nitrogen metabolic pathways also provides significant molecular information for further Pseudomonas species modification and development.


Assuntos
Carpas , Nitratos , Animais , Nitratos/metabolismo , Nitritos/metabolismo , Amônia , Carpas/metabolismo , Água , Pseudomonas/genética , Pseudomonas/metabolismo , Nitrogênio/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(25): 14552-14560, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513689

RESUMO

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive. To understand the network structure in agroecosystems engineered by several farming methods, including environmentally friendly soil solarization, we utilized a multiomics approach on a field planted with Brassica rapa We found that the soil solarization increased plant shoot biomass irrespective of the type of fertilizer applied. Our multiomics and integrated informatics revealed complex interactions in the agroecosystem showing multiple network modules represented by plant traits heterogeneously associated with soil metabolites, minerals, and microbes. Unexpectedly, we identified soil organic nitrogen induced by soil solarization as one of the key components to increase crop yield. A germ-free plant in vitro assay and a pot experiment using arable soils confirmed that specific organic nitrogen, namely alanine and choline, directly increased plant biomass by acting as a nitrogen source and a biologically active compound. Thus, our study provides evidence at the agroecosystem level that organic nitrogen plays a key role in plant growth.


Assuntos
Brassica rapa/crescimento & desenvolvimento , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Solo/química , Alanina/química , Alanina/metabolismo , Biomassa , Brassica rapa/metabolismo , Colina/química , Colina/metabolismo , Produtos Agrícolas/metabolismo , Conjuntos de Dados como Assunto , Redes e Vias Metabólicas/efeitos da radiação , Metabolômica , Microbiota/fisiologia , Microbiota/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Rizosfera , Microbiologia do Solo , Luz Solar
15.
J Environ Manage ; 336: 117601, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870319

RESUMO

Wastewater-originated nitrogen (N) is considered a primary N source in urban waters. In order to mitigate eutrophication in such waters, decreasing N discharges from wastewater treatment plants (WWTPs) is necessary. Upgrading WWTPs from conventional activated sludge (CAS) to biological nutrient removal (BNR) is the most common measure to lower levels of effluent N. However, in spite of successful N reduction through such upgrades, eutrophication persists in numerous urban waters. In this study, we investigated why decreased N discharge resulting from upgrading CAS to BNR, particularly predenitrification BNR, cannot necessarily alleviate eutrophication. Our laboratory reactor study demonstrated that compared to CAS effluent N, predenitrification BNR effluent N contains less dissolved inorganic N (DIN) but more dissolved organic N (DON), especially low molecular weight DON (LMW-DON). Bioassay-based experimental and numerical analyses found that effluent N has dissimilar phytoplankton-stimulating potency depending on its chemical forms. In particular, effluent LMW-DON showed significantly greater potency than effluent DIN. This difference in potency makes predenitrification BNR effluent N more productive for causing primary production than CAS effluent N. These results indicate that the impact of effluent N on eutrophication should be evaluated based on not only the total quantity but also the qualitative aspect of N.


Assuntos
Fitoplâncton , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/química , Águas Residuárias , Esgotos
16.
J Environ Manage ; 348: 119190, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37837768

RESUMO

This study investigated the effect of the landscape pattern of permeable/impermeable patches on NO3--N and particulate organic nitrogen (PON) concentrations during stormwater runoff transport and their source contributions. Six landscape pattern indices, namely, mean proximity index (MPI), largest patch index (LPI), mean shape index (MSI), landscape shape index (LSI), connect index (CONNECT), and splitting index (SPLIT), were selected to reflect the fragmentation, complexity, and connectivity of permeable patches in urban catchments. The results show that lower fragmentation, higher complexity, and greater connectivity can reduce NO3--N concentrations in road runoff and drainage flow (i.e., the flow in the stormwater drainage network), as well as PON concentrations in road runoff. Further, the above landscape pattern is effective for mitigating the contributions of NO3--N and PON from road runoff. Low impact development (LID) can be incorporated with the landscape pattern of permeable/impermeable patches to mitigate nitrogen pollution in urban stormwater at the catchment scale by optimizing the spatial arrangement.


Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Nitrogênio/análise , Monitoramento Ambiental/métodos , Movimentos da Água , Poluentes Químicos da Água/análise , Chuva , Compostos Orgânicos/análise , Poeira
17.
J Environ Manage ; 331: 117301, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681035

RESUMO

As an efficient wastewater pretreatment biotechnology, electrostimulated hydrolysis acidification (eHA) has been used to accelerate the removal of refractory pollutants, which is closely related to the effects of electrostimulation on microbial interspecies associations. However, the ecological processes underpinning such linkages remain unresolved, especially for the microbial communities derived from different niches, such as the electrode surface and plankton. Herein, the principles of cross-niche microbial associations and community assembly were investigated using molecular ecological network and phylogenetic bin-based null model analysis (iCAMP) based on 16S rRNA gene sequences. The electrostimulated planktonic sludge and electrode biofilm displayed significantly (P < 0.05) 1.67 and 1.53 times higher organic nitrogen pollutant (azo dye Alizarin Yellow R) degradation efficiency than non-electrostimulation group, and the corresponding microbial community composition and structure were significantly (P < 0.05) changed. Electroactive bacteria and functional degraders were enriched in the electrode biofilm and planktonic sludge, respectively. Notably, electrostimulation strengthened the synergistic microbial associations (1.8 times more links) between sludge and biofilm members. Additionally, both electrostimulation and cross-niche microbial associations induced greater importance of deterministic assembly. Overall, this study highlights the specificity of cross-electrode surface microbial associations and ecological processes with electrostimulation and advances our understanding of the manipulation of sludge microbiomes in engineered wastewater treatment systems.


Assuntos
Esgotos , Purificação da Água , Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Reatores Biológicos
18.
J Environ Manage ; 338: 117757, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996567

RESUMO

Nitrogen fractions in soil, like organic nitrogen, mineral nitrogen, and free amino acids, are sensitive pointers to the soil nitrogen pools involved in nutrient cycling. As a potential improvement measure, biochar might improve soil fertility and nutrient availability. However, few studies have focused on the long-term effects of biochar retention on the soil nitrogen supply capacity of bulk and rhizosphere soil in brown earth. Therefore, a six-year field experiment was conducted in 2013, concentrating on the impact of biochar retention on soil nitrogen fractions. Four biochar rates were tested: no biochar amendment (CK); 15.75 t ha-1 of biochar (BC1); 31.5 t ha-1 of biochar (BC2); 47.25 t ha-1 of biochar (BC3). Our results showed that the elevated application rates significantly enhanced soil organic matter (SOM), and total nitrogen (TN), and improved pH in both bulk and rhizosphere soils. Acid-hydrolyzable nitrogen (AHN) content in biochar treatments was higher than that of CK in bulk and rhizosphere soil. The content of non-hydrolyzable nitrogen (NHN) was increased in 47.25 t ha-1 of biochar retention. Ammonium nitrogen (AN) and amino sugar nitrogen (ASN) contents were higher in bulk soil than in rhizosphere soil. Neutral amino acid contents were the highest both in bulk and rhizosphere soil. Principal component analysis (PCA) showed that soil organic nitrogen was significantly influenced by BC3 treatment in bulk soil, and largely influenced by other treatments in rhizosphere soil. Partial least square path modeling (PLSPM) revealed that NH4+-N was mainly derived from amino acid nitrogen (AAN) and AN in bulk soil and AAN and ASN in rhizosphere soil. These results indicate that different biochar retention rates contributed to improve soil nutrients. Amino acid nitrogen was the prominent nitrogen source of NH4+-N in bulk and rhizosphere soils.


Assuntos
Rizosfera , Solo , Solo/química , Fertilizantes/análise , Nitrogênio/análise , Carvão Vegetal , Aminoácidos
19.
J Environ Sci (China) ; 125: 309-318, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375916

RESUMO

Accurate quantification of dissolved organic nitrogen (DON) has been a challenge due to the cumulative analytical errors in the conventional method via subtracting dissolved inorganic nitrogen species (DIN) from total dissolved nitrogen (TDN). Size exclusion chromatography coupled with an organic nitrogen detector (SEC-OND) has been developed as a direct method for quantification and characterization of DON. However, the applications of SEC-OND method still subject to poor separations between DON and DIN species and unsatisfied N recoveries of macromolecules. In this study, we packed a series of SEC columns with different lengths and resin materials for separation of different N species and designed an independent vacuum ultraviolet (VUV) oxidation device for complete oxidation converting N species to nitrate. To guarantee sufficient N recoveries, the operation conditions were optimized as oxidation time ≥ 30 min, injection mass (sample concentration × injection volume) < 1000 µL × mg-N/L for macromolecular proteins, and neutral pH mobile eluent. The dissolved O2 concentration in SEC mobile phase determined the upper limit of VUV oxidation at a specific oxidation time. Compared to conventional HW50S column (20 × 250 mm), HW40S column (20 × 350 mm) with mobile phase comprising of 1.5 g/L Na2HPO4·2H2O + 2.5 g/L KH2PO4 (pH = 6.85) could achieve a better separation of DON, nitrite, nitrate, and ammonia. When applied to river water, lake water, wastewater effluent, groundwater, and landfill leachate, the SEC-OND method could quantify DON as well as DIN species accurately and conveniently even the DIN/TDN ratio reached 0.98.


Assuntos
Nitratos , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Nitritos , Amônia/análise , Matéria Orgânica Dissolvida , Compostos Orgânicos/análise , Cromatografia em Gel , Óxidos de Nitrogênio/análise , Água/química
20.
Plant Mol Biol ; 109(4-5): 413-425, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35103913

RESUMO

The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA