Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 40, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191299

RESUMO

BACKGROUND: Viral diseases are posing threat to annual production and quality of tobacco in China. Recently, tomato spotted wilt orthotospovirus (TSWV) has been reported to infect three major crops including tobacco. Current study was aimed to investigate the population dynamics and molecular diversity of the TSWV. In the current study, to assess and identify the prevalence and evolutionary history of TSWV in tobacco crops in China, full-length genome sequences of TSWV isolates from tobacco, were identified and analyzed. METHODS: After trimming and validation, sequences of new isolates were submitted to GenBank. We identified the full-length genomes of ten TSWV isolates, infecting tobacco plants from various regions of China. Besides these, six isolates were partially sequenced. Phylogenetic analysis was performed to assess the relativeness of newly identified sequences and corresponding sequences from GenBank. Recombination and population dynamics analysis was performed using RDP4, RAT, and statistical estimation. Reassortment analysis was performed using MegaX software. RESULTS: Phylogenetic analysis of 41 newly identified sequences, depicted that the majority of the Chinese isolates have separate placement in the tree. RDP4 software predicted that RNA M of newly reported isolate YNKM-2 had a recombinant region spanning from 3111 to 3811 bp. The indication of parental sequences (YNKMXD and YNHHKY) from newly identified isolates, revealed the conservation of local TSWV population. Genetic diversity and population dynamics analysis also support the same trend. RNA M was highlighted to be more capable of mutating or evolving as revealed by data obtained from RDP4, RAT, population dynamics, and phylogenetic analyses. Reassortment analysis revealed that it might have happened in L segment of TSWV isolate YNKMXD (reported herein). CONCLUSION: Taken together, this is the first detailed study revealing the pattern of TWSV genetic diversity, and population dynamics helping to better understand the ability of this pathogen to drastically reduce the tobacco production in China. Also, this is a valuable addition to the existing worldwide profile of TSWV, especially in China, where a few studies related to TSWV have been reported including only one complete genome of this virus isolated from tobacco plants.


Assuntos
Vírus de RNA , Solanum lycopersicum , Filogenia , Evolução Biológica , China , Produtos Agrícolas , Nicotiana , RNA
2.
Virus Genes ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150471

RESUMO

The complete genome sequence of Orthotospovirus tomatozonae (tomato zonate spot virus, TZSV) isolated in Japan was determined and compared with that of Chinese isolates. The lengths of the S, M, and L segments of the RNA genomes of the Japanese isolate (TZSV-TZ1-3) were 3194, 4675, and 8916 nucleotides, respectively, which were similar to the Chinese isolates. Moreover, the eight motifs on the RNA-dependent RNA polymerase (RdRp) gene were conserved in both TZSV-TZ1-3 and Chinese TZSV isolates (TZSV-Bidens and TZSV-Tomato-YN). The nucleotide identity of the genes among the TZSV isolates was more than 94%, indicating low diversity among viruses. The phylogenetic analysis and the prediction of the cleavage sites in the glycoprotein showed that the TZSV-TZ1-3 isolate was closely related to TZSV-Tomato-YN isolated from China. However, there were unique frameshifts and deletions on the RdRp and glycoprotein genes of the TZSV-Tomato-YN isolate, suggesting that both isolates were genetically distinct. The findings of this study indicate that the TZSV-TZ1-3 isolate originated in China and show the sequence diversity among TZSV isolates.

3.
Plant Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698525

RESUMO

Cucurbits (family Cucurbitaceae) includes globally important fruit and vegetable crops. Virus diseases pose a serious threat to cucurbits, limiting crop quality and yield (Regina et al. 2021). In fall 2023, leaf and fruit samples from two squash plants with chlorotic mosaic symptoms and fruit distortion from Monroe and Pope counties in Arkansas were received for diagnosis at the University of Arkansas Division of Agriculture Plant Clinic. Based on symptoms, samples were assessed for melon severe mosaic orthotospovirus (MeSMV) using the ImmunoStrip® developed for detection of the virus (Agdia® Inc., Elkhart, Indiana). The presence of MeSMV was also confirmed by RT-PCR using the Agdia Tospovirus group PCR primers. An amplicon was sequenced and showed 91% sequence identity to the MESMV type isolate (NC_033834, VE440-A). To further verify the results, nucleic acids from a squash sample from Pope County were extracted as described by Poudel et al. (2013), DNase treated, and sequenced on an Oxford Nanopore MinION as described by Liefting et al. (2021). A total of 25,914 raw reads were analyzed using VirFind (Ho and Tzanetakis 2014), which identified 112 reads mapping to the three segments of MeSMV. Primers for all three RNAs were developed and amplified 638, 650, and 1153 nt of the S, M, and L segments of the virus respectively. The amplicons were sequenced bidirectionally and show 89-93% identity to the type isolate from Mexico (GenBank accessions PP301332-4). MeSMV has only been identified in Mexico and can cause significant losses to honeydew melon, zucchini, and cucumber (Ciuffo et al. 2009). Thus, this is the first report of MeSMV outside Mexico. Given the severity of the symptoms observed in cucurbit crops, the virus poses a potential threat to the cucurbit industry in the United States. Growers should be aware of this virus and take the necessary precautions to prevent its spread in the field.

4.
Plant Dis ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115953

RESUMO

Impatiens necrotic spot virus (INSV) (Orthotospovirus impatiensnecromaculae) is a virus in the Order Bunyavirales and Family Tospoviridae. The virus is vectored by several species of thrips and is a serious pathogen of ornamentals and lettuce in the United States (Hasegawa & Del Pozo-Valdivia 2023; Daughtrey, M. L., et al. 1997; Webster, C. G., et al. 2015). In January 2023, tomato plants (Solanum lycopersicum,'Big Dena') with viral symptoms of reduced vigor, wilting, necrotic spots on leaves, and sunken lesions on the stem were observed in one greenhouse in Guilford County, North Carolina (NC) (Figure 1A-C). Disease incidence was low (2%), with only three symptomatic plants in the single greenhouse. Affected plants also had signs of thrips feeding (dead thrips, frass, and feeding scars) present across the whole plant (Figure 1D). Samples were submitted to the NC State Plant Disease and Insect Clinic and tested positive for INSV, but negative for TSWV, using Agdia ImmunoStrips®. RNA was extracted from symptomatic leaf tissue using the IBI Total RNA Mini kit (Plant), and complementary DNA (cDNA) was generated using the ThermoFisher Verso cDNA synthesis kit. A reverse transcriptase (RT)-PCR with INSV nucleocapsid (N) primers (F:5'-ATGAACAAAGCAAAGATTACC-3' and R:5'- TTAAATAGAATCATTTTTCCC-3') was used to confirm INSV presence (Hassani-Mehraban et al. 2016). Full length N cDNA amplicon sequencing [GenBank No. PP658213] revealed 99.62% nucleotide identity to NCBI GenBank accessions KF926828 (orchid in California), MH453554.1 (hosta from NY), and MH453552.1 (foxglove from NY), all of which are INSV N sequences. The infected leaf samples were used to mechanically inoculate Emilia sonchifolia and tomato (cv.'Moneymaker') using standard virological methods. We successfully infected E. sonchifolia with INSV (confirmed with visual mosaic symptoms and positive INSV ImmunoStrip). However, mechanical inoculation of the tomato plants proved unsuccessful. Using the INSV infected E. sonchifolia leaves as an inoculum source, we generated a viruliferous Frankliniella occidentalis (Western flower thrips) cohort and challenged three week old tomatoes using thrips mediated inoculation (adapted from Aramburu et al. 2009 and Rotenberg et al., 2009). Twenty days post-inoculation, tomatoes with thrips feeding scars were symptomatic for INSV infection with chlorotic and necrotic spots, stunting, and reduced vigor. INSV infection of these tomato plants was verified with a positive INSV ImmunoStrip® result, two-step RT-PCR amplification of N, and Sanger sequencing of N. Samples from thrips-inoculated tomato plants did not test positive for TSWV. Sequence alignment showed that the recovered virus sequence was 99.85% identical to the original INSV sequence from the diagnostic sample (a single nucleotide difference). To the best of our knowledge, this is the first instance of INSV infecting tomato in NC production systems. Although TSWV is more common in vegetable production in NC (253 cases of TSWV compared to 1 case of INSV in vegetable crops based on NC State Plant Disease and Insect Clinic records since 2008), INSV incursion into tomato producing areas is concerning and should be closely monitored, especially at the transplant stage. This report also underscores the importance of using thrips vectors to transmit virus in screening for susceptibility to orthotospoviruses.

5.
Plant Pathol J ; 40(3): 310-321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835302

RESUMO

Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.

6.
Virus Res ; 344: 199362, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508402

RESUMO

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Assuntos
Genoma Viral , Ilarvirus , Filogenia , Doenças das Plantas , Pólen , Vitis , Vitis/virologia , Doenças das Plantas/virologia , Pólen/virologia , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Ilarvirus/classificação , Animais , RNA Viral/genética , Sequenciamento Completo do Genoma , Tisanópteros/virologia
7.
Virology ; 593: 110029, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382160

RESUMO

Orthotospoviruses, a genera of negative-sense ssRNA viruses transmitted by thrips, have gained significant attention in recent years due to their detrimental impact on diverse crops, causing substantial economic losses and posing threats to food security. Orthotospoviruses are characterised by a wide range of symptoms in plants, including chlorotic/necrotic spots, vein banding, and fruit deformation. Seven species, including four definite and three tentative species in the genus Orthotospovirus, have so far been documented on the crops of the Indian subcontinent. Management of Orthotospoviruses under field conditions is challenging since they have a wide host range, adaptation to versatile environmental conditions, a lack of promising resistance sources, and the ubiquitous nature of thrips and their transmission through a propagative manner. Our present review elucidates the significance, molecular biology and evolutionary relationship of Orthotospoviruses; vector population; and possible management strategies for Orthotospoviruses and their vectors in the scenario of the Indian subcontinent.


Assuntos
Tisanópteros , Tospovirus , Animais , Doenças das Plantas , Tospovirus/genética , Tisanópteros/genética , Produtos Agrícolas , Agricultura
8.
J Agric Food Chem ; 72(30): 16661-16673, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39021284

RESUMO

Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.


Assuntos
Autofagia , Resistência à Doença , Proteínas de Insetos , Doenças das Plantas , Tisanópteros , Tospovirus , Animais , Tospovirus/fisiologia , Tospovirus/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Tisanópteros/virologia , Tisanópteros/imunologia , Tisanópteros/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Solanum lycopersicum/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Ninfa/imunologia , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , Ninfa/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
9.
Front Plant Sci ; 14: 1283399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235194

RESUMO

Tomato spotted wilt (TSW) disease caused by tomato spotted wilt orthotospovirus (TSWV, Orthotospovirus tomatomaculae) poses a significant threat to specialty and staple crops worldwide by causing over a billion dollars in crop losses annually. Current strategies for TSWV diagnosis heavily rely on nucleic acid or protein-based techniques which require significant technical expertise, and are invasive, time-consuming, and expensive, thereby catalyzing the search for better alternatives. In this study, we explored the potential of Raman spectroscopy (RS) in early detection of TSW in a non-invasive and non-destructive manner. Specifically, we investigated whether RS could be used to detect strain specific TSW symptoms associated with four TSWV strains infecting three differentially resistant tomato cultivars. In the acquired spectra, we observed notable reductions in the intensity of vibrational peaks associated with carotenoids. Using high-performance liquid chromatography (HPLC), we confirmed that TSWV caused a substantial decrease in the concentration of lutein that was detected by RS. Finally, we demonstrated that Partial Least Squares-Discriminant Analysis (PLS-DA) could be used to differentiate strain-specific TSW symptoms across all tested cultivars. These results demonstrate that RS can be a promising solution for early diagnosis of TSW, enabling timely disease intervention and thereby mitigating crop losses inflicted by TSWV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA