Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(48): 18421-18434, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619514

RESUMO

Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.


Assuntos
Células Ependimogliais/metabolismo , Ativação do Canal Iônico/fisiologia , Neuroglia/metabolismo , Oócitos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Tamanho Celular , Células Ependimogliais/citologia , Feminino , Ativação do Canal Iônico/genética , Camundongos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Oócitos/citologia , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Fosforilação , Ratos , Canais de Cátion TRPV/genética , Xenopus laevis
2.
J Physiol ; 595(11): 3287-3302, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28295351

RESUMO

KEY POINTS: Mammalian cells are frequently exposed to stressors causing volume changes. The transient receptor potential vanilloid 4 (TRPV4) channel translates osmotic stress into ion flux. The molecular mechanism coupling osmolarity to TRPV4 activation remains elusive. TRPV4 responds to isosmolar cell swelling and osmolarity translated via different aquaporins. TRPV4 functions as a volume-sensing ion channel irrespective of the origin of the cell swelling. ABSTRACT: Transient receptor potential channel 4 of the vanilloid subfamily (TRPV4) is activated by a diverse range of molecular cues, such as heat, lipid metabolites and synthetic agonists, in addition to hyposmotic challenges. As a non-selective cation channel permeable to Ca2+ , it transduces physical stress in the form of osmotic cell swelling into intracellular Ca2+ -dependent signalling events. Its contribution to cell volume regulation might include interactions with aquaporin (AQP) water channel isoforms, although the proposed requirement for a TRPV4-AQP4 macromolecular complex remains to be resolved. To characterize the elusive mechanics of TRPV4 volume-sensing, we expressed the channel in Xenopus laevis oocytes together with AQP4. Co-expression with AQP4 facilitated the cell swelling induced by osmotic challenges and thereby activated TRPV4-mediated transmembrane currents. Similar TRPV4 activation was induced by co-expression of a cognate channel, AQP1. The level of osmotically-induced TRPV4 activation, although proportional to the degree of cell swelling, was dependent on the rate of volume changes. Importantly, isosmotic cell swelling obtained by parallel activation of the co-expressed water-translocating Na+ /K+ /2Cl- cotransporter promoted TRPV4 activation despite the absence of the substantial osmotic gradients frequently employed for activation. Upon simultaneous application of an osmotic gradient and the selective TRPV4 agonist GSK1016790A, enhanced TRPV4 activation was observed only with subsaturating stimuli, indicating that the agonist promotes channel opening similar to that of volume-dependent activation. We propose that, contrary to the established paradigm, TRPV4 is activated by increased cell volume irrespective of the molecular mechanism underlying cell swelling. Thus, the channel functions as a volume-sensor, rather than as an osmo-sensor.


Assuntos
Tamanho Celular , Pressão Osmótica , Transdução de Sinais , Canais de Cátion TRPV/metabolismo , Potenciais de Ação , Animais , Aquaporinas/metabolismo , Ratos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA