Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cancer Sci ; 115(8): 2565-2577, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38932521

RESUMO

Cisplatin (CDDP) is a commonly used chemotherapeutic for osteosarcoma (OS) patients, and drug resistance remains as a major hurdle to undermine the treatment outcome. Here, we investigated the potential involvement of FoxG1 and BNIP3 in CDDP resistance of OS cells. FoxG1 and BNIP3 expression levels were detected in the CDDP-sensitive and CDDP-resistant OS tumors and cell lines. Mitophagy was observed through transmission electron microscope analysis. The sensitivity to CDDP in OS cells upon FoxG1 overexpression was examined in cell and animal models. We found that FoxG1 and BNIP3 showed significant downregulation in the CDDP-resistant OS tumor samples and cell lines. CDDP-resistant OS tumor specimens and cells displayed impaired mitophagy. FoxG1 overexpression promoted BNIP3 expression, enhanced mitophagy in CDDP-resistant OS cells, and resensitized the resistant cells to CDDP treatment in vitro and in vivo. Our data highlighted the role of the FoxG1/BNIP3 axis in regulating mitophagy and dictating CDDP resistance in OS cells, suggesting targeting FoxG1/BNIP3-dependent mitophagy as a potential strategy to overcome CDDP resistance in OS.


Assuntos
Neoplasias Ósseas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead , Proteínas de Membrana , Mitofagia , Proteínas do Tecido Nervoso , Osteossarcoma , Proteínas Proto-Oncogênicas , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Mitofagia/efeitos dos fármacos , Cisplatino/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Linhagem Celular Tumoral , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Feminino , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
2.
Mol Carcinog ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041949

RESUMO

Osteosarcoma (OS) is the most common primary malignant tumor of bone. The aim of this study was to investigate the regulatory mechanisms of M2 macrophage exosomes (M2-Exos) in ferroptosis in OS. A mouse model was established to investigate the in vivo role of M2-Exos. We investigated their effects on ferroptosis in OS using erastin, a ferroptosis activator, and deferoxamine mesylate, an iron chelator. In vitro, we investigated whether the Apoc1/Acyl-CoA Synthetase Family Member 2 (ACSF2) axis mediates these effects, using shApoc1 and shACSF2. The mechanisms whereby Apoc1 regulates ACSF2 were examined using cyclohexanone, a protein synthesis inhibitor, and MG132, a proteasomal inhibitor. M2-Exos reversed the inhibitory effects of erastin on OS cells, thus enhancing their viability, migration, invasion, proliferation, and reducing ferroptosis. Apoc1 was highly expressed in M2-Exos, and interfering with this expression reversed the effects of M2-Exos on OS cells. ACSF2 mediated the effects of M2-Exos-derived Apoc1. Apoc1 interacted with ACSF2, which, in turn, interacted with USP40. Apoc1 overexpression increased ACSF2 ubiquitination, promoting its degradation, whereas USP40 overexpression inhibited ACSF2 ubiquitination and promoted its expression. Apoc1 overexpression inhibited ACSF2 binding to USP40. M2-Exos-derived Apoc1 promoted ferroptosis resistance by inhibiting USP40 binding to ACSF2 and promoting ACSF2 ubiquitination and degradation, thus enhancing OS development.

3.
Biochem Biophys Res Commun ; 676: 198-206, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37536195

RESUMO

BACKGROUND: Cisplatin (CDDP) is a mainstay chemotherapeutic agent for OS treatment, but drug resistance has become a hurdle to limit its clinical effect. Autophagy plays an important role in CDDP resistance in OS, and in the present study we explored the role of ANXA2 and Rac1 in dictating CDDP sensitivity in OS cells. METHODS: ANXA2 and Rac1 expression levels were examined by Western blot and autophagy induction was detected by transmission electron miscroscope (TEM) in the clinical samples and OS cell lines. CDDP resistant cells were established by exposing OS cells to increasing doses of CDDP. The effects of ANXA2 and Rac1 knockdown on CDDP sensitivity were evaluated in the cell and animal models. RESULTS: Reduced autophagy was associated with the increased expression of ANXA2 and Rac1 in CDDP resistant OS tumor samples and cells. Autophagy suppression promoted CDDP resistance and inducing autophagy re-sensitized the resistant cells to CDDP treatment in vitro and in vivo. Further, knocking down ANXA2 or Rac1 re-activated autophagy and attenuated CDDP resistance in OS cells. We further demonstrated that CDDP resistant OS cells displayed a poorer osteogenic differentiation state when compared to the parental cell lines, which was significantly reversed by autophagy re-activation and ANXA2 or Rac1 silencing. CONCLUSION: Our findings revealed a complicated interplay of ANXA2/Rac1, autophagy induction, and osteogenic differentiation in dictating CDDP resistance in OS cells, suggesting ANXA2 and Rac1 as promising targets to modulate autophagy and overcome CDDP resistance in OS cells.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Animais , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Osteogênese , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Autofagia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose
4.
Exp Cell Res ; 414(1): 113082, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218724

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy. Circular RNAs (circRNAs) have been implicated in OS pathogenesis. In the current study, we explored the precise role of circRNA cyclin dependent kinase 14 (circ-CDK14, hsa_circ_0001721) in OS progression. METHODS: The levels of circ-CDK14, miR-198 and E2F transcription factor 2 (E2F2) were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Cell viability, apoptosis, migration and invasion were determined using the Cell Counting-8 Kit (CCK-8), flow cytometry and transwell assays, respectively. Glucose consumption, lactate production and adenosine triphosphate (ATP) level were gauged using the commercial assay kits. The direct relationship between miR-198 and circ-CDK14 or E2F2 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays. Animal studies were used to analyze the role of circ-CDK14 in vivo. RESULTS: Our data revealed that circ-CDK14 was up-regulated and miR-198 was down-regulated in OS tissues and cell lines. Circ-CDK14 silencing suppressed OS cell viability, migration, invasion, and glycolysis and promoted cell apoptosis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ-CDK14 directly targeted miR-198. Moreover, miR-198 was a functional mediator of circ-CDK14 in regulating OS cell progression in vitro. E2F2 was a direct target of miR-198, and miR-198 overexpression regulated OS cell progression in vitro by down-regulating E2F2. Furthermore, circ-CDK14 regulated E2F2 expression by functioning as a sponge of miR-198 in OS cells. CONCLUSION: Our findings demonstrate the inhibitory effect of circ-CDK14 silencing on OS progression by targeting the miR-198/E2F2 axis, establishing a strong rationale for decreasing circ-CDK14 as a novel therapeutic strategy for OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , RNA Circular/genética
5.
J Nanobiotechnology ; 21(1): 243, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507707

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most prevalent primary malignant bone tumor. However, single-agent chemotherapy exhibits limited efficacy against OS and often encounters tumor resistance. Therefore, we designed and constructed an integrated treatment strategy of photothermal therapy (PTT) combined with chemotherapy and used a surface-encapsulated platelet-osteosarcoma hybrid membrane (OPM) that enhances circulation time and enables OS-specific targeting. RESULTS: The OPM functions as a shell structure, encapsulating multiple drug-loaded nanocores (BPQDs-DOX) and controlling the release rate of doxorubicin (DOX). Moreover, near-infrared light irradiation accelerates the release of DOX, thereby extending circulation time and enabling photostimulation-responsive release. The OPM encapsulation system improves the stability of BPQDs, enhances their photothermal conversion efficiency, and augments PTT efficacy. In vitro and ex vivo experiments demonstrate that BPQDs-DOX@OPM effectively delivers drugs to tumor sites with prolonged circulation time and specific targeting, resulting in superior anti-tumor activity compared to single-agent chemotherapy. Furthermore, these experiments confirm the favorable biosafety profile of BPQDs-DOX@OPM. CONCLUSIONS: Compared to single-agent chemotherapy, the combined therapy using BPQDs-DOX@OPM offers prolonged circulation time, targeted drug delivery, enhanced anti-tumor activity, and high biosafety, thereby introducing a novel approach for the clinical treatment of OS.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Pontos Quânticos , Humanos , Pontos Quânticos/química , Fósforo/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Fototerapia/métodos , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
6.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570809

RESUMO

Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R). IF3 was used in TRT to effectively inhibit tumor growth in osteosarcoma preclinical models. However, IF3's relatively short half-life in mice raised the need for improvement. We generated an Fc-engineered version of IF3, termed IF3δ, with amino acid substitutions known to enhance antibody half-life in human serum. In this study, we confirmed the specific binding of IF3δ to IGF2R with nanomolar affinity, similar to wild-type IF3. Additionally, IF3δ demonstrated binding to human and mouse neonatal Fc receptors (FcRn), indicating the potential for FcRn-mediated endocytosis and recycling. Biodistribution studies in mice showed a higher accumulation of IF3δ in the spleen and bone than wild-type IF3, likely attributed to abnormal spleen expression of IGF2R in mice. Therefore, the pharmacokinetics data from mouse xenograft models may not precisely reflect their behavior in canine and human patients. However, the findings suggest both IF3 and IF3δ as promising options for the RIT of osteosarcoma.


Assuntos
Osteossarcoma , Somatomedinas , Humanos , Camundongos , Animais , Cães , Imunoglobulina G , Distribuição Tecidual , Fragmentos Fc das Imunoglobulinas/genética , Antígenos de Histocompatibilidade Classe I , Osteossarcoma/tratamento farmacológico , Somatomedinas/metabolismo , Meia-Vida
7.
Cancer Cell Int ; 22(1): 136, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346195

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common malignant tumor of bone, and the clinical efficacy of current treatments and associated survival rates need to be further improved by employing novel therapeutic strategies. Although various studies have shown that BMI1 protein is universally upregulated in OS cells and tissues, its specific role and underlying mechanism have not yet been fully explored. METHODS: Expression of BMI1 protein in OS cells was detected by western blot. The effect of BMI1 on proliferation and migration of OS cells (143B and U-2OS cell lines) was investigated in vitro using CCK-8, colony formation and transwell assays, and in vivo using subcutaneous tumorigenesis and lung metastasis assays in xenograft nude mice. Expression of epithelial-mesenchymal transition (EMT)-associated proteins was detected by immunofluorescence imaging. Bioinformatic analysis was performed using ENCODE databases to predict downstream targets of BMI1. SIK1 mRNA expression in osteosarcoma cells was detected by quantitative real-time reverse transcription PCR (qPCR). Chromatin immunoprecipitation-qPCR (ChIP-qPCR) was used to investigate expression of BMI1-associated, RING1B-associated, H2AK119ub-associated and H3K4me3-associated DNA at the putative binding region of BMI1 on the SIK1 promoter in OS cells. RESULTS: Using both in vitro and in vivo experimental approaches, we found that BMI1 promotes OS cell proliferation and metastasis. The tumor suppressor SIK1 was identified as the direct target gene of BMI1 in OS cells. In vitro experiments demonstrated that SIK1 could inhibit proliferation and migration of OS cells. Inhibition of SIK1 largely rescued the altered phenotypes of BMI1-deficient OS cells. Mechanistically, we demonstrated that BMI1 directly binds to the promoter region of SIK1 in a complex with RING1B to promote monoubiquitination of histone H2A at lysine 119 (H2AK119ub) and inhibit H3K4 trimethylation (H3K4me3), resulting in inhibition of SIK1 transcription. We therefore suggest that BMI1 promotes OS cell proliferation and metastasis by inhibiting SIK1. CONCLUSIONS: Our results reveal a novel molecular mechanism of OS development promoted by BMI1 and provides a new potential target for OS treatment.

8.
J Cell Mol Med ; 25(11): 4962-4973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960631

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light-emitting diodes (LED)-based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation-induced autophagy characterized by alterations in autophagy protein markers including Beclin-1, LC3-II/LC3-I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti-tumour activities of blue LED irradiation. Next, ROS scavenger N-acetyl-L-cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED-induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin-1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin-1 and EGFR-immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin-1 upon blue LED irradiation in OS cells. In addition, Beclin-1 down-regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti-tumour effects on OS by triggering ROS and EGFR/Beclin-1-mediated autophagy signalling pathway, representing a potential approach for human OS treatment.


Assuntos
Morte Celular Autofágica , Neoplasias Ósseas/patologia , Luz/efeitos adversos , Osteossarcoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Osteossarcoma/etiologia , Osteossarcoma/metabolismo , Fosforilação , Células Tumorais Cultivadas
9.
Biochem Biophys Res Commun ; 554: 214-221, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33813077

RESUMO

Osteosarcoma (OS) is the most common bone malignant tumor. However, the genetic basis of OS pathogenesis is still not understood, and occurrence of chemo-resistance is a major reason for the high morbidity of OS patients. Recently, chromodomain helicase/ATPase DNA binding protein 1-like gene (CHD1L) has been identified as a gene related to malignant tumor progression. Unfortunately, its effects on OS development and drug resistance are still not understood. In the study, we attempted to investigate the effects of CHD1L on tumorigenesis and chemoresistance in OS. We found that CHD1L expression was markedly up-regulated in OS samples, especially in cisplatin (cDDP)-resistant patients. We also showed that OS cells with CHD1L knockdown were more sensitive to cDDP treatment with lower IC50 values. In addition, we found that CHD1L deletion markedly reduced cell proliferation and induced apoptosis in OS cells with cDDP resistance. Moreover, the properties of cancer stem cells were highly suppressed in cDDP-resistant OS cells following CHD1L knockdown. Furthermore, multidrug resistance protein 1 (MDR-1) expression levels were dramatically decreased in OS cells with cDDP resistance when CHD1L was suppressed. Functional analysis indicated that CHD1L knockdown clearly restrained the activation of ERK1/2, protein kinase B (AKT) and NF-κB signaling pathways in cDDP-resistant OS cells. Consistently, animal experiments suggested that CHD1L suppression mitigated cDDP resistance in the generated in vivo xenografts. Collectively, CHD1L could modulate chemoresistance of OS cells to cDDP, and thus may be inspiring findings for overcoming drug resistance in OS.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Cisplatino/farmacologia , DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Células-Tronco Neoplásicas/patologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
BMC Cancer ; 21(1): 1345, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922489

RESUMO

BACKGROUNDS: Osteosarcomas are one of the most common primary malignant tumors of bone. It primarily occurs in children and adolescents, with the second highest incidence among people over 50 years old. Although there were immense improvements in the survival of patients with osteosarcoma in the past 30 years, targetable mutations and agents of osteosarcomas still have been generally not satisfactory. Therefore, it is of great importance to further explore the highly specialized immune environment of bone, genes related to macrophage infiltration and potential therapeutic biomarkers and targets. METHODS: The 11 expression data sets of OS tissues and the 11 data sets of adjacent non-tumorous tissues available in the GEO database GSE126209 were used to conduct immune infiltration analysis. Then, through WGCNA analysis, we acquired the co-expression modules related to Mast cells activated and performed the GO and KEGG enrichment analysis. Next, we did the survival prognosis analysis and plotted a survival curve. Finally, we analyzed the COX multivariate regression of gene expression on clinical parameters and drew forest maps for visualization by the forest plot package. RESULTS: OS disease-related immune cell populations, mainly Mast cells activated, have higher cell content (p = 0.006) than the normal group. Then, we identified co-expression modules related to Mast cells activated. In sum, a total of 822 genes from the top three strongest positive correlation module MEbrown4, MEdarkslateblue and MEnavajowhite2 and the strongest negative correlation module MEdarkturquoise. From that, we identified nine genes with different levels in immune cell infiltration related to osteosarcoma, eight of which including SORBS2, BAIAP2L2, ATAD2, CYGB, PAMR1, PSIP1, SNAPC3 and ZDHHC21 in their low abundance have higher disease-free survival probability than the group in their high abundances. CONCLUSION: These results could assist clinicians to select targets for immunotherapies and individualize treatment strategies for patients with OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Recidiva Local de Neoplasia/epidemiologia , Osteossarcoma/imunologia , Adolescente , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/mortalidade , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mastócitos/imunologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/mortalidade , Prognóstico , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
11.
J Biol Chem ; 294(12): 4381-4400, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30679313

RESUMO

MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.


Assuntos
Neoplasias Ósseas/genética , Ciclina A2/metabolismo , MicroRNAs/fisiologia , Osteossarcoma/genética , Regiões 3' não Traduzidas , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Replicação do DNA , Modelos Animais de Doenças , Regulação para Baixo , Fase G1 , Fase G2 , Redes Reguladoras de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Mensageiro/genética , Fase S
12.
Cancer Cell Int ; 20: 269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587477

RESUMO

BACKGROUND: Cancer stem cell (CSC) is identified in osteosarcoma (OS) and considered resistant to chemotherapeutic agents. However, the mechanism of osteosarcoma stem cell (OSC) resistant to chemotherapy remains debatable and vague, and the metabolomics feature of OSC is not clarified. MATERIALS AND METHODS: OSC was isolated by using sphere forming assay and identified. Untargeted LC-MS/MS analysis was performed to reveal the metabolomics feature of OSC and underlying mechanisms of OSC resistant to methotrexate (MTX). RESULTS: OSC was efficiently isolated and identified from human OS 143B and MG63 cell lines with enhanced chemo-resistance to MTX. The untargeted LC-MS analysis revealed that OSC showed differential metabolites and perturbed signaling pathways, mainly involved in metabolisms of fatty acid, amino acid, carbohydrate metabolism and nucleic acid. After treated with MTX, metabolomics feature of OSC was mainly involved metabolisms of amino acid, fatty acid, energy and nucleic acid. Moreover, compared with their parental OS cells response to MTX, the differential metabolites and perturbed signaling pathways were mainly involved in metabolism of amino acid, fatty acid and nucleic acid. What's more, Rap1 signaling pathway and Ras signaling pathway were involved in OS cells and their SCs response to MTX. CONCLUSION: Sphere-forming assay was able to efficiently isolate OSC from human OS cell lines and the untargeted LC-MS/MS analysis was suggested a sufficient methodology to investigate metabolomics features of OS cells and OSCs. Moreover, the metabolomics features of OSCs response to MTX might reveal a further understanding of chemotherapeutic resistance in OS.

13.
Adv Exp Med Biol ; 1258: 177-187, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32767242

RESUMO

Understanding how the tumor microenvironment participates in inhibiting or supporting tumor growth is critical for the development of novel therapies. Osteosarcoma (OS) metastasizes almost exclusively to the lung, an organ where Fas ligand (FasL) is constitutively expressed. This chapter focuses on our studies dedicated to the interaction of OS cells with the lung microenvironment. We will summarize our studies conducted over the past 20 years showing the importance of the Fas/FasL signaling pathway to the establishment and progression of OS metastases in the lung. We demonstrated that the FasL+ lung microenvironment eliminates Fas-positive (Fas+) OS cells that metastasize to the lungs, through apoptosis induced by Fas signaling following interaction of Fas on the tumor cell surface with FasL on the lung epithelial cells. Expression of the Fas receptor on OS cells inversely correlated with the ability of OS cells to form lung metastases. Blocking this pathway interferes with this process, allowing Fas+ cells to grow in the lung. By contrast, upregulation of Fas on Fas- OS cells inhibited their ability to metastasize to the lung. We demonstrated how the FasL+ lung microenvironment can be leveraged for therapeutic intent through the upregulation of Fas expression. To this end, we demonstrated that the histone deacetylase inhibitor entinostat upregulated Fas expression on OS cells, reduced their ability to form lung metastases, and induced regression of established micrometastases. Fas expression in OS cells is regulated epigenetically by the microRNA miR-20a. We showed that expressions of Fas and miR-20a are inversely correlated, and that delivery of anti-miR-20a in vivo to mice with established osteosarcoma lung metastases resulted in upregulation of Fas and tumor regression. Therefore, targeting the Fas signaling pathway may present therapeutic opportunities, which target the lung microenvironment for elimination of OS lung metastases. We have also shown that in addition to being critically involved in the metastatic potential, the Fas signaling pathway may also contribute to the efficacy of chemotherapy. We demonstrated that the chemotherapeutic agent gemcitabine (GCB) increased Fas expression in both human and mouse OS cells in vitro. In vivo, aerosol GCB therapy induced upregulation of Fas expression and the regression of established osteosarcoma lung metastases. The therapeutic efficacy of GCB was contingent upon a FasL+ lung microenvironment as aerosol GCB had no effect in FasL-deficient mice. Manipulation of Fas expression and the Fas pathway should be considered, as this concept may provide additional novel therapeutic approaches for treating patients with OS lung metastases.


Assuntos
Neoplasias Ósseas/patologia , Proteína Ligante Fas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Transdução de Sinais , Receptor fas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Humanos , Osteossarcoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
14.
J Cell Physiol ; 234(4): 3598-3612, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471098

RESUMO

Osteosarcoma (OS), as the most frequent primary malignancy of bone, is characterized by the presence of malignant mesenchymal cells. In the current study, our aim was to explore the possible effects Fos-like antigen-1 (FOSL1) had on the silencing regarding OS cell proliferation, invasion, and migration through the activation of the extracellular-signal-regulated kinase (ERK)/activator protein-1 (AP-1) signaling pathway. After the collection of OS on top of already having the adjacent normal tissue samples, the protein positive expression rate of FOSL1 was then measured by implementing the use of immunohistochemistry and discovered that FOSL1 was robustly expressed in OS. Later, to better grasp the impact FOSL1 projects on OS and its underlying mechanism, we determined the OS related genes as well as the ERK/AP-1 signaling pathway related genes expression by using a reverse-transcription quantitative polymerase chain reaction and western blot assay techniques. The results of the aforementioned two experiments revealed that the FOSL1 depletion had downregulated the expression of OS related genes by simultaneously downregulating the ERK/AP-1 signaling pathway. Moreover, cell proliferation, cycle, apoptosis, invasion, and migration of FOS1 were all tested by using a cell counting kit-8 assay, flow cytometry, Transwell assay, and scratch test, and these results presented that silencing of the FOSL1 gene inhibited OS cell proliferation, invasion, and migration. Our findings revealed a novel mechanism by which FOSL1 depletion played a significantly negative role in the OS progression through the regulation of the ERK/AP-1 signaling pathway. Functional suppression of FOSL1 might be a future therapeutic strategy regarding OS.


Assuntos
Neoplasias Ósseas/enzimologia , Movimento Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteossarcoma/enzimologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/metabolismo , Adolescente , Adulto , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais , Adulto Jovem
15.
J Cell Physiol ; 234(6): 8998-9007, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317613

RESUMO

A growing amount of evidence has shown that long noncoding RNAs (lncRNAs) play crucial roles in osteosarcoma (OS). However, little knowledge is available about the functional roles and molecular mechanisms of lncRNA Alu-mediated p21 transcriptional regulator (APTR) in OS. Herein, APTR expression was demonstrated to be significantly upregulated in OS tumor tissues and four OS cell lines (including MG63, 143B, Saos-2, and HOS) compared with the adjacent tissues and human osteoblast cell line hFOB1.19, respectively. We confirmed miR-132-3p to be a target for APTR, and its expression was demonstrated to be inhibited by APTR. In functional terms, knockdown of APTR and overexpression of miR-132-3p both, remarkably repressed human OS cell proliferation, invasion and migration, and induced apoptosis. Also, Yes-associated protein 1 (YAP1) was determined as an inhibitory target of miR-132-3p. Moreover, our findings demonstrated that the repression of YAP1 protein expression and the suppression of Ki-67, MMP9, and Bcl2 expression induced by APTR knockdown required increased miR-132-3p. Thus, APTR contributed to OS progression through repression of miR-132-3p and upregulation of YAP1 expression. Therefore, we have uncovered a novel regulatory mechanism by which the APTR/miR-132-3p/YAP1 axis can regulate OS progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Apoptose , Sítios de Ligação , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
16.
J Cell Biochem ; 120(5): 8792-8797, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30556159

RESUMO

Osteosarcoma (OS) is a common primary malignant bone tumor in young adolescents. About 30% of patients with OS have a recurrence, and the overall survival after OS recurrence is not good. In this study, we aimed to analyze and identify factors that influence prognosis after OS relapse. We retrieved the Gene Expression Omnibus data set and collected a series of transcriptome data with clinical information, including microRNA (miRNA) and messenger RNA (mRNA) expression profiles in recurrent OS. Upon comparison of the dysregulated genes of survival status in the recurrent OS samples, it was found that there were 268 differential expressed (DE) mRNAs and six DE miRNAs. These genes are related to pathways in cancer. We also predicted the interaction networks of these DE mRNAs and miRNAs. Further, we applied cibersort to estimate the proportion of immune cell types and we discovered that natural killer cells and macrophages have different abundance between good prognosis and poor prognosis. Our study indicates that for recurrent OS samples, there are several differences between these two groups, including gene expression and the status of immune activation. The immunity status is a candidate signature for disease prediction, prevention, and therapy choices.

17.
J Cell Biochem ; 120(5): 7286-7296, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30387181

RESUMO

Diallyl disulfide (DADS), a volatile component of garlic oil, exerts anticancer activity in various types of cancers, while its anticancer effects against osteosarcoma (OS) have not been previously explored. This study aimed to investigate the anticancer potential of DADS in OS and to explore the underlying mechanisms. DADS reduced the cell viability and increased the expression of miR-134 in OS cell lines, and this effect was in a time- and concentration-dependent manner. Furthermore, in vitro functional assays revealed that DADS significantly inhibited the proliferation and invasion of human OS U2OS and MG-63 cells, which was partially reversed by miR-134 inhibitor transfection. DADS exhibited in vivo antitumor activity and upregulated miR-134 expression in xenograft tumors. Downregulation of miR-134 attenuated DADS-induced antitumor capacity. Further bioinformatics prediction analysis revealed that the 3'-untranslated region (3'-UTR) of Forkhead Box M1 (FOXM1) harbored miR-134-binding sites, and overexpression of miR-134 repressed the luciferase activity of the reporting vector containing FOXM1 3'-UTR. Both miR-134 overexpression and DADS inhibited FOXM1 expression in U2OS cells, while enforced expression of FOXM1 suppressed DADS-induced antiproliferation and anti-invasion capacity in U2OS cells. Furthermore, DADS treatment led to significant downregulation of cyclin D1, c-myc, and lymphoid enhancer-binding factor 1 expression, but the remarkably upregulated p21 level in U2OS cells. Collectively, DADS could be a promising anticancer agent for OS, and the underlying mechanisms might be associated with the antiproliferation and anti-invasion properties through upregulating miR-134 expression.

18.
J Cell Biochem ; 120(4): 5435-5443, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30302807

RESUMO

Osteosarcoma (OS) is considered the most common type of primary malignant bone tumor, which has a high rate of mortality in children and adolescents. However, the current treatment methods for OS are ineffective. Therefore, there is an urgent requirement to identify the critical targets. This study aimed to identify the roles and significance of microRNA-216b (miR-216b) in OS. To explore the cellular and molecular functions of miR-216b and Forkhead Box M1 (FoxM1) in OS, the expression of miR-216b and FoxM1 at the transcriptional level was measured using quantitative real-time PCR (qRT-PCR). Wound healing assay, 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay (MTT) assay, flow cytometry, and transwell invasion assay were conducted to study the function of miR-216b and FoxM1 in OS cells. Dual luciferase reporter assay was performed to identify the relationships between miR-216b and FoxM1. qRT-PCR results revealed that miR-216b expression was significantly downregulated, and FoxM1 was observed to be significantly upregulated in human OS cell lines (MG-63) and tissues. MTT data showed that upregulation of miR-216b expression led to cell growth inhibition in MG-63 cells. The results of the invasion assay and wound healing assay illustrated that miR-216b upregulation or FoxM1 downregulation could inhibit the invasion and migration in MG-63 cells. In vivo, the tumor volume was significantly decreased by miR-194 mimic treatment compared with the control group. Furthermore, the results of the luciferase assay indicated that FoxM1 is a direct target of miR-216b. These findings may provide novel insights into the molecular mechanism of miR-216b and FoxM1 in the progression of OS, and suggested that miR-216b may serve as a potential tumor inhibitor of OS by targeting FoxM1.


Assuntos
Biomarcadores Tumorais/genética , Proteína Forkhead Box M1/genética , MicroRNAs/genética , Osteossarcoma/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/patologia , Transdução de Sinais
19.
J Cell Biochem ; 120(4): 5495-5504, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30302813

RESUMO

MicroRNA-17-5p (miR-17-5p) and epithelial-mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR-17-5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR-17-5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real-time PCR was used to detect the miR-17-5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR-17-5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit-8, the annexin V-FITC apoptosis, wound-healing, and transwell assays. The SRCIN1 was validated as a target of the miR-17-5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E-cadherin, N-cadherin, and Snail was identified by the Western blot analysis. MiR-17-5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR-17-5p. Silenced miR-17-5p could change the expression of EMT markers, such as upregulating the expression of E-cadherin, and downregulating the expression of N-cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR-17-5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR-17-5p/SRCIN1/EMT signaling pathway involved in the progression of OS.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Neoplasias Ósseas/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Osteossarcoma/metabolismo , RNA Neoplásico/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Feminino , Humanos , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Neoplásico/genética
20.
J Cell Biochem ; 120(4): 6502-6514, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485482

RESUMO

Increasing evidence shows that the long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) plays important roles in tumor progression. However, the function and the underlying mechanism of NEAT1 in osteosarcoma (OS) remain unclear. In the present study, we found that NEAT1 expression was significantly upregulated in OS tissues and cell lines. High NEAT1 expression was closely associated with advanced clinicopathologic features and poor overall survival of patients with OS. Using in vitro function assay, we found that NEAT1 could promote the proliferation, invasion, and epithelial-mesenchymal transition (EMT) process of OS cells. NEAT1 could also promote OS cell growth in vivo. In addition, our studies showed that miR-186-5p was a downstream target of NEAT1 in OS. Functionally, miR-186-5p suppressed the proliferation, invasion, and EMT process of OS cells. Furthermore, our data revealed that HIF-1α was a downstream target of miR-186-5p and that NEAT1 could exert its tumor oncogenic roles on OS cells via the miR-186-5p/HIF-1α axis. Taking our results together, we elucidated that the NEAT1/miR-186-5p/HIF-1α axis might be a therapeutic approach for the treatment of OS.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA