Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 34(2): e4445, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205505

RESUMO

Ultra-high field MRI offers many opportunities to expand the applications of MRI. In order for this to be realized, the technical problems associated with MRI at field strengths of 7 T and greater need to be solved or mitigated. This paper explores the use of new variations of composite RF pulses, named serial transmit excitation pulses (STEP), in contrast to parallel pulse techniques, in order to remove and/or mitigate the effects of non-uniform B1 excitation fields associated with the subject (eg the human brain). Several techniques based on STEP sequences are introduced and their application to human brain imaging is presented and evaluated.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Ondas de Rádio
2.
NMR Biomed ; 33(12): e4308, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32342560

RESUMO

The development and implementation of novel MRI pulse sequences remains challenging and laborious. Gradient waveforms are typically designed using a combination of analytical and ad hoc methods to construct each gradient waveform axis independently. This strategy makes coding the pulse sequence complicated, in addition to being time inefficient. As a consequence, nearly all commercial MRI pulse sequences fail to maximize use of the available gradient hardware or efficiently mitigate physiological effects. This results in expensive MRI systems that underperform relative to their inherent hardware capabilities. To address this problem, a software solution is proposed that incorporates numerical optimization methods into MRI pulse sequence programming. Examples are shown for rotational variant vs. invariant waveform designs, acceleration nulled velocity encoding gradients, and mitigation of peripheral nerve stimulation for diffusion encoding. The application of optimization methods to MRI pulse sequence design incorporates gradient hardware limits and the prescribed MRI protocol parameters (e.g. field-of-view, resolution, gradient moments, and/or b-value) to simultaneously construct time-optimal gradient waveforms. In many cases, the resulting constrained gradient waveform design problem is convex and can be solved on-the-fly on the MRI scanner. The result is a set of multi-axis time-optimal gradient waveforms that satisfy the design constraints, thereby increasing SNR-efficiency. These optimization methods can also be used to mitigate imaging artifacts (e.g. eddy currents) or account for peripheral nerve stimulation. The result of the optimization method is to enable easier pulse sequence gradient waveform design and permit on-the-fly implementation for a range of MRI pulse sequences.


Assuntos
Imageamento por Ressonância Magnética/métodos , Análise de Ondaletas , Meios de Contraste/química , Difusão , Estimulação Elétrica , Humanos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiologia , Rotação
3.
J Sci Food Agric ; 97(1): 33-42, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27435122

RESUMO

Over the last decade, a wide variety of new foods have been introduced into the global marketplace, many with health benefits that exceed those of traditional foods. Simultaneously, a wide range of analytical technologies has evolved that allow greater capability for the determination of food composition. Nuclear magnetic resonance (NMR), traditionally a research tool used for structural elucidation, is now being used frequently for metabolomics and chemical fingerprinting. Its stability and inherent ease of quantification have been exploited extensively to identify and quantify bioactive components in foods and dietary supplements. In addition, NMR fingerprints have been used to differentiate cultivars, evaluate sensory properties of food and investigate the influence of growing conditions on food crops. Here we review the latest applications of NMR in food analysis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Produtos Agrícolas/química , Análise de Alimentos/métodos , Espectroscopia de Ressonância Magnética/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Dieta , Humanos , Metabolômica
4.
NMR Biomed ; 28(6): 706-14, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25908098

RESUMO

Liver biopsy is the standard test for the assessment of fibrosis in liver tissue of patients with chronic liver disease. Recent studies have used a non-invasive measure of T1 relaxation time to estimate the degree of fibrosis in a single slice of the liver. Here, we extend this work to measure T1 of the whole liver and investigate the effects of additional histological factors such as steatosis, inflammation and iron accumulation on the relationship between liver T1 and fibrosis. We prospectively enrolled patients who had previously undergone liver biopsy to have MR scans. A non-breath-holding, fast scanning protocol was used to acquire MR relaxation time data (T1 and T2*), and blood serum was used to determine the enhanced liver fibrosis (ELF) score. Areas under the receiver operator curves (AUROCs) for T1 to detect advanced fibrosis and cirrhosis were derived in a training cohort and then validated in a second cohort. Combining the cohorts, the influence of various histology factors on liver T1 relaxation time was investigated. The AUROCs (95% confidence interval (CI)) for detecting advanced fibrosis (F ≥ 3) and cirrhosis (F = 4) for the training cohort were 0.81 (0.65-0.96) and 0.92 (0.81-1.0) respectively (p < 0.01). Inflammation and iron accumulation were shown to significantly alter T1 in opposing directions in the absence of advanced fibrosis; inflammation increasing T1 and iron decreasing T1. A decision tree model was developed to allow the assessment of early liver disease based on relaxation times and ELF, and to screen for the need for biopsy. T1 relaxation time increases with advanced fibrosis in liver patients, but is also influenced by iron accumulation and inflammation. Together with ELF, relaxation time measures provide a marker to stratify patients with suspected liver disease for biopsy.


Assuntos
Artefatos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Ferro/metabolismo , Fígado/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Pharmaceutics ; 16(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39339268

RESUMO

Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.

6.
Biomedicines ; 5(4)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120405

RESUMO

Antibody-drug conjugates (ADCs) have become a promising class of antitumor agents with four conjugates being approved by regulatory agencies for treating cancer patients. To improve the conventional conjugations that are currently applied to generate these heterogeneous products, various site-specific approaches have been developed. These methods couple cytotoxins or chemotherapeutic drugs to specifically defined sites in antibody molecules including cysteine, glutamine, unnatural amino acids, short peptide tags, and glycans. The ADCs produced showed high homogeneity, increased therapeutic index, and strong antitumor activities in vitro and in vivo. Moreover, there are recent trends in using these next generation technologies beyond the cytotoxin-conjugated ADC. These site-specific conjugations have been applied for the generation of many different immunoconjugates including bispecific Fab or small molecule-antibody conjugates, immunosuppressive antibodies, and antibody-antibiotic conjugates. Thus, it is likely that additional technologies and related site-specific conjugates will emerge in the near future, with various chemicals or small molecular weight proteins in addition to cytotoxin for better treatment of many challenging diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA