Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808488

RESUMO

The continued rise of antibiotic resistance threatens to undermine the utility of the world's current antibiotic arsenal. This problem is particularly troubling when it comes to Gram-negative pathogens for which there are inherently fewer antibiotics available. To address this challenge, recent attention has been focused on finding compounds capable of disrupting the Gram-negative outer membrane as a means of potentiating otherwise Gram-positive-specific antibiotics. In this regard, agents capable of binding to the lipopolysaccharide (LPS) present in the Gram-negative outer membrane are of particular interest as synergists. Recently, thrombin-derived C-terminal peptides (TCPs) were reported to exhibit unique LPS-binding properties. We here describe investigations establishing the capacity of TCPs to act as synergists with the antibiotics erythromycin, rifampicin, novobiocin, and vancomycin against multiple Gram-negative strains including polymyxin-resistant clinical isolates. We further assessed the structural features most important for the observed synergy and characterized the outer membrane permeabilizing activity of the most potent synergists. Our investigations highlight the potential for such peptides in expanding the therapeutic range of antibiotics typically only used to treat Gram-positive infections.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Trombina/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-32015038

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that is inherently resistant to many antibiotics and represents an increasing threat due to the emergence of drug-resistant strains. There is a pressing need to develop innovative antimicrobials against this pathogen. In this study, we identified the O-specific antigen (OSA) of P. aeruginosa serotype O6 as a novel target for therapeutic intervention. Binding of monoclonal antibodies and antigen-binding fragments therefrom to O6 OSA leads to rapid outer membrane destabilization and inhibition of cell growth. The antimicrobial effect correlated directly with antibody affinity. Antibody binding to the O antigen of a second lipopolysaccharide (LPS) type present in P. aeruginosa or to the LPS core did not affect cell viability. Atomic force microscopy showed that antibody binding to OSA resulted in early flagellum loss, formation of membrane blebs, and eventually complete outer membrane loss. We hypothesize that antibody binding to OSA disrupts a key interaction in the P. aeruginosa outer membrane.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Membrana Externa Bacteriana/patologia , Antígenos O/imunologia , Pseudomonas aeruginosa/imunologia , Afinidade de Anticorpos/imunologia , Flagelos/fisiologia , Lipopolissacarídeos/imunologia , Microscopia de Força Atômica , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
3.
ACS Infect Dis ; 7(12): 3314-3335, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34766746

RESUMO

Pentamidine, an FDA-approved antiparasitic drug, was recently identified as an outer membrane disrupting synergist that potentiates erythromycin, rifampicin, and novobiocin against Gram-negative bacteria. The same study also described a preliminary structure-activity relationship using commercially available pentamidine analogues. We here report the design, synthesis, and evaluation of a broader panel of bis-amidines inspired by pentamidine. The present study both validates the previously observed synergistic activity reported for pentamidine, while further assessing the capacity for structurally similar bis-amidines to also potentiate Gram-positive specific antibiotics against Gram-negative pathogens. Among the bis-amidines prepared, a number of them were found to exhibit synergistic activity greater than pentamidine. These synergists were shown to effectively potentiate the activity of Gram-positive specific antibiotics against multiple Gram-negative pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, including polymyxin- and carbapenem-resistant strains.


Assuntos
Acinetobacter baumannii , Antibacterianos , Amidinas , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae
4.
Steroids ; 118: 55-60, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27998758

RESUMO

An efficient procedure for the synthesis of (20S)-3ß-acetoxy-5α-pregnane-20,16ß-carbolactone is described. Bactericidal and fungicidal activity of the lactone against different bacteria such as MSSA, MRSA, E. coli ESBL, P. aeruginosa and clinical isolates of Candida spp., in planktonic and biofilm growth stage were assessed. Additionally, the affinity of this new compound to microbial plasma membrane and hemoglobin release from human red blood cells were determined using fluorometric and colorimetric assay, respectively. Our studies revealed that the lactone exhibits strong antifungal activity, and the ability to prevent pathogens' biofilm formation. Additionally, upon lactone treatment a significant affinity to fungal, but not to human cell membranes, indicating suitable biocompatibility was observed.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fluconazol/farmacologia , Antifúngicos/química , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA