Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1869(11): 119330, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35917894

RESUMO

Peroxisomes are single-membrane organelles essential for cell metabolism including the ß-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.


Assuntos
Peróxido de Hidrogênio , Peroxissomos , Animais , Catalase/metabolismo , Homeostase , Humanos , Mamíferos , Camundongos , Transtornos Peroxissômicos , Peroxissomos/metabolismo
2.
ACS Appl Mater Interfaces ; 12(43): 48363-48370, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33049141

RESUMO

Although the piezoelectric property of a BaTiO3 nanoparticle is routinely used in energy harvesting application, it can also be exploited for wireless cell stimulation and cell therapy. However, such biomedical application is rare due to limited availability of colloidal BaTiO3 nanoparticles of <100 nm hydrodynamic size with good piezocatalytic property and efficient biolabeling performance. Here, we report a colloidal form of a piezocatalytic BaTiO3-based nanorod of <100 nm hydrodynamic size that can offer wireless cell stimulation. The nanorod is prepared using a TiO2 nanorod as the template, and the resultant TiO2-BaTiO3-based composite nanorod is coated with a hydrophilic polymer shell. These nanorods can label cells and, under the ultrasound exposure, produce reactive oxygen species inside cells via piezocatalysis, leading to cell death. These nanorods can be used for wireless modulation of intracellular processes.


Assuntos
Compostos de Bário/química , Nanotubos/química , Titânio/química , Catálise , Morte Celular , Células HeLa , Humanos , Hidrodinâmica , Estresse Oxidativo , Tamanho da Partícula , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA