Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
1.
J Biol Chem ; 299(11): 105325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805141

RESUMO

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Depuradores Classe E , Humanos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/química , Receptores Depuradores Classe E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
2.
Angiogenesis ; 27(3): 545-560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733496

RESUMO

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.


Assuntos
Lipoproteínas LDL , Fatores de Transcrição SOX9 , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Animais , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Camundongos , Humanos , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Masculino , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Autorrenovação Celular , Células Endoteliais/metabolismo
3.
Mol Med ; 30(1): 117, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123116

RESUMO

BACKGROUND: Lipid metabolism disorders are associated with degeneration of multiple tissues and organs, but the mechanism of crosstalk between lipid metabolism disorder and intervertebral disc degeneration (IDD) has not been fully elucidated. In this study we aim to investigate the regulatory mechanism of abnormal signal of lipid metabolism disorder on intervertebral disc endplate chondrocyte (EPC) senescence and calcification. METHODS: Human intervertebral disc cartilage endplate tissue, cell model and rat hyperlipemia model were performed in this study. Histology and immunohistochemistry were used to human EPC tissue detection. TMT-labelled quantitative proteomics was used to detect differential proteins, and MRI, micro-CT, safranin green staining and immunofluorescence were performed to observe the morphology and degeneration of rat tail intervertebral discs. Flow cytometry, senescence-associated ß-galactosidase staining, alizarin red staining, alkaline phosphatase staining, DCFH-DA fluorescent probe, and western blot were performed to detect the expression of EPC cell senescence, senescence-associated secretory phenotype, calcification-related proteins and the activation of cell senescence-related signaling pathways. RESULTS: Our study found that the highly expressed oxidized low-density lipoprotein (ox-LDL) and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in human degenerative EPC was associated with hyperlipidemia (HLP). TMT-labelled quantitative proteomics revealed enriched pathways such as cell cycle regulation, endochondral bone morphogenesis and inflammation. The rat model revealed that HLP could induce ox-LDL, LOX-1, senescence and calcification markers high expression in EPC. Moreover, we demonstrated that ox-LDL-induced EPCs senescence and calcification were dependent on the LOX-1 receptor, and the ROS/P38-MAPK/NF-κB signaling pathway was implicated in the regulation of senescence induced by ox-LDL/LOX-1 in cell model. CONCLUSIONS: So our study revealed that ox-LDL/LOX-1-induced EPCs senescence and calcification through ROS/P38-MAPK/NF-κB signaling pathway, providing information on understanding the link between lipid metabolism disorders and IDD.


Assuntos
Senescência Celular , Condrócitos , Degeneração do Disco Intervertebral , Metabolismo dos Lipídeos , Lipoproteínas LDL , Receptores Depuradores Classe E , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Lipoproteínas LDL/metabolismo , Animais , Humanos , Receptores Depuradores Classe E/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Ratos , Masculino , Calcinose/metabolismo , Calcinose/patologia , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , Adulto , Proteômica/métodos , Ratos Sprague-Dawley
4.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605563

RESUMO

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Lipoproteínas LDL , Macrófagos , Linfócitos T Auxiliares-Indutores , Animais , Camundongos , Aterosclerose/genética , Citocinas/metabolismo , Células Espumosas/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo
5.
Exp Eye Res ; 238: 109727, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972749

RESUMO

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Assuntos
Dieta Hiperlipídica , Artéria Oftálmica , Doenças Vasculares , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Obesidade , Artéria Oftálmica/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Doenças Vasculares/metabolismo , Vasodilatação
6.
Cell Biol Int ; 48(3): 290-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100125

RESUMO

Oxidized low-density lipoprotein (ox-LDL) causes dysfunction of endothelial progenitor cells (EPCs), and we recently reported that 14-3-3-η can attenuate the damage triggered by ox-LDL in EPCs. However, the molecular mechanisms by which 14-3-3-η protects EPCs from the damage caused by ox-LDL are not fully understood. In this study, we observed that the expression of 14-3-3-η and BCL-2 were downregulated in ox-LDL-treated EPCs. Overexpression of 14-3-3-η in ox-LDL-treated EPC significantly increased BCL-2 level, while knockdown of BCL-2 reduced 14-3-3-η expression and mitigated the protective effect of 14-3-3-η on EPCs. In addition, we discovered that 14-3-3-η colocalizes and interacts with BCL-2 in EPCs. Taken together, these data suggest that 14-3-3-η protects EPCs from ox-LDL-induced damage by its interaction with BCL-2.


Assuntos
Células Progenitoras Endoteliais , Humanos , Apoptose , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Exp Cell Res ; 429(2): 113666, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271250

RESUMO

TM6SF2, predominantly expressed in the liver and intestine, is closely associated with lipid metabolism. We have demonstrated the presence of TM6SF2 in VSMCs within human atherosclerotic plaques. Subsequent functional studies were conducted to investigate its role in lipid uptake and accumulation in human vascular smooth muscle cells (HAVSMCs) using siRNA knockdown and overexpression techniques. Our results showed that TM6SF2 reduced lipid accumulation in oxLDL-stimulated VSMCs, likely through the regulation of lectin-like oxLDL receptor 1 (LOX-1) and scavenger receptor cluster of differentiation 36 (CD36) expression. We concluded that TM6SF2 plays a role in HAVSMC lipid metabolism with opposing effects on cellular lipid droplet content by downregulation of LOX-1 and CD36 expression.


Assuntos
Músculo Liso Vascular , Receptores Depuradores Classe E , Humanos , Músculo Liso Vascular/metabolismo , Receptores Depuradores Classe E/genética , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Miócitos de Músculo Liso/metabolismo , Regulação para Baixo , Fígado/metabolismo , Proteínas de Membrana/metabolismo
8.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508744

RESUMO

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Células Epiteliais , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
9.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791535

RESUMO

Hypercholesterolemia-associated oxidative stress increases the formation of oxidized low-density lipoprotein (oxLDL), which can affect endothelial cell function and potentially contribute to renal dysfunction, as reflected by changes in urinary protein excretion. This study aimed to investigate the impact of exogenous oxLDL on urinary excretion of albumin and nephrin. LDL was isolated from a patient with familial hypercholesterolemia (FH) undergoing lipoprotein apheresis (LA) and was oxidized in vitro with Cu (II) ions. Biochemical markers of LDL oxidation, such as TBARS, conjugated dienes, and free ε-amino groups, were measured. Wistar rats were treated with a single intraperitoneal injection of PBS, LDL, or oxLDL (4 mg of protein/kg b.w.). Urine was collected one day before and two days after the injection. We measured blood lipid profiles, urinary protein excretion (specifically albumin and nephrin), and markers of systemic oxidative stress (8-OHdG and 8-iso-PGF2α). The results showed that injection of oxLDL increased urinary albumin excretion by approximately 28% (310 ± 27 µg/24 h vs. 396 ± 26 µg/24 h, p = 0.0003) but had no effect on nephrin excretion. Neither PBS nor LDL had any effect on urinary albumin or nephrin excretion. Additionally, oxLDL did not affect systemic oxidative stress. In conclusion, hypercholesterolemia may adversely affect renal function through oxidatively modified LDL, which interferes with the renal handling of albumin and leads to the development of albuminuria.


Assuntos
Albuminúria , Lipoproteínas LDL , Estresse Oxidativo , Ratos Wistar , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Animais , Humanos , Ratos , Albuminúria/urina , Masculino , Oxirredução , Proteínas de Membrana/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/urina
10.
Int Heart J ; 65(3): 466-474, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38749754

RESUMO

Endothelial cell dysfunction is the main pathology of atherosclerosis (AS). Sirtuin 6 (SIRT6), a deacetylase, is involved in AS progression. This study aimed to investigate the impacts of SIRT6 on the pyroptosis of endothelial cells and its underlying mechanisms. ApoE-/- mice were fed a high-fat diet (HFD) to establish the AS mouse model, atherosclerotic lesions were evaluated using oil red O staining, and blood lipids and inflammatory factors were measured using corresponding kits. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to establish the cell model, and pyroptosis was evaluated by flow cytometry, ELISA, and western blot. Immunoprecipitation (IP), co-IP, western blot, and immunofluorescence were used to detect the molecular mechanisms. The results showed that SIRT6 expression was downregulated in the blood of HFD-induced mice and ox-LDL-induced HUVECs. Overexpression of SIRT6 reduced atherosclerotic lesions, blood lipids, and inflammation in vivo and suppressed pyroptosis of HUVECs in vitro. Moreover, SIRT6 interacted with ASC to inhibit the acetylation of ASC, thus, reducing the interaction between ASC and NLRP3. Moreover, SIRT6 inhibits endothelial cell pyroptosis in the aortic roots of mice by deacetylating ASC. In conclusion, SIRT6 deacetylated ASC to inhibit its interaction with NLRP3 and then suppressed pyroptosis of endothelial cells, thus, decelerating the progression of AS. The findings provide new insights into the function of SIRT6 in AS.


Assuntos
Aterosclerose , Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , Piroptose , Sirtuínas , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Sirtuínas/metabolismo , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Modelos Animais de Doenças , Dieta Hiperlipídica , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL
11.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889041

RESUMO

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
12.
Pathol Int ; 73(9): 406-412, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341622

RESUMO

Cutaneous xanthoma consist of foam cells that originate from monocytes or macrophages and accumulate in perivascular areas of the skin. The main component of these cells is oxidized low-density lipoprotein (oxLDL). In this study, we show that mast cells surround the accumulated foam cells, suggesting their involvement in xanthoma formation. Coculture of THP-1 or U937 monocytes with the human mast cell line LUVA upregulated their uptake of oxLDL. Positive staining for intracellular cell adhesion molecule-1 (ICAM-1) at the borders between mast cells and foam cells was seen in pathological specimens of the most common cutaneous xanthoma, xanthelasma palpebrarum, and in cocultures. In the latter, ICAM1 messenger RNA levels were upregulated. The administration of anti-ICAM-1 blocking antibody inhibited the increase in oxLDL uptake by THP-1 or U937 monocytes cocultured with LUVA. Taken together, these results suggest a role for mast cells in the formation of xanthelasma palpebrarum and the involvement of ICAM-1 in this process.


Assuntos
Aterosclerose , Xantomatose , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Macrófagos/patologia , Xantomatose/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Monócitos/patologia , Aterosclerose/patologia
13.
J Clin Lab Anal ; 37(1): e24807, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36525335

RESUMO

BACKGROUND: Small dense low-density lipoprotein (sdLDL) possesses atherogenic potential and is predicted to be susceptible to atherogenic modifications, which further increases its atherogenicity. However, studies on the association between measured or estimated sdLDL cholesterol (sdLDL-C) levels and atherogenic modification in diverse population groups are lacking. METHODS: Surplus serum samples were collected from male subjects with type 2 diabetes mellitus (DM) under treatment (n = 300) and without DM (non-DM; n = 150). sdLDL and oxidized LDL (oxLDL) levels were measured using the Lipoprint LDL subfractions kit (Quantimetrix Corporation) and the Mercodia oxidized LDL competitive enzyme-linked immunosorbent assay kit (Mercodia), respectively. The estimated sdLDL-Cs were calculated from two relevant equations. The effects of sdLDL-C on oxLDL were assessed using multiple linear regression (MLR) models. RESULTS: The mean (±SD) of measured sdLDL-C and oxLDL concentrations were 11.8 ± 10.0 mg/dl and 53.4 ± 14.2 U/L in the non-DM group and 0.20 ± 0.81 mg/dl and 46.0 ± 15.3 U/L in the DM group, respectively. The effects of measured sdLDL-Cs were significant (p = 0.031), whereas those of estimated sdLDL-Cs were not (p = 0.060, p = 0.116) in the non-DM group in the MLR models. The effects of sdLDL-Cs in the DM group were not significant. CONCLUSION: In the general population, high level of sdLDL-C appeared to be associated with high level of oxLDL. The equation for estimating sdLDL-C developed from a general population should be applied with caution to a special population, such as patients with DM on treatment.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Humanos , Masculino , LDL-Colesterol , Biomarcadores , Fatores de Risco
14.
Clin Exp Hypertens ; 45(1): 2280758, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37963203

RESUMO

Circular RNAs (circRNAs) regulate the function of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) progression. We aimed to explore the role of circUSP9X in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs. Cell proliferation was assessed using cell counting kit-8 and EDU assays. Cell migration was evaluated using Transwell and wound healing assays. The interaction between circUSP9X or STIM1 and miR-599 was analyzed using dual-luciferase reporter and RNA pull-down assays. Their levels were examined using quantitative real-time PCR. CircUSP9X and STIM1 expression was increased, whereas miR-599 expression was reduced in the serum of patients with AS and ox-LDL-stimulated VSMCs. Overexpression of circUSP9X facilitated the proliferation and migration of VSMCs induced by ox-LDL. CircUSP9X sponged miR-599, which targeted STIM1. MiR-599 reversed the effects induced by circUSP9X, and STIM1 reversed the effects induced by miR-599. Taken together, CircUSP9X promoted proliferation and migration in ox-LDL-treated VSMCs via the miR-599/STIM1 axis, providing a theoretical basis for the role of circUSP9X/miR-599/STIM1 axis in AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Músculo Liso Vascular , Aterosclerose/genética , Proliferação de Células , Lipoproteínas LDL/farmacologia , MicroRNAs/genética
15.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240332

RESUMO

Patients with systemic lupus erythematosus (SLE) are at an increased risk of cardiovascular disease. We aimed to evaluate whether antibodies to oxidized low-density lipoprotein (anti-oxLDL) were associated with subclinical atherosclerosis in patients with different SLE phenotypes (lupus nephritis, antiphospholipid syndrome, and skin and joint involvement). Anti-oxLDL was measured by enzyme-linked immunosorbent assay in 60 patients with SLE, 60 healthy controls (HCs) and 30 subjects with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV). Intima-media thickness (IMT) assessment of vessel walls and plaque occurrence were recorded using high-frequency ultrasound. In the SLE cohort, anti-oxLDL was again assessed in 57 of the 60 individuals approximately 3 years later. The levels of anti-oxLDL in the SLE group (median 5829 U/mL) were not significantly different from those in the HCs group (median 4568 U/mL), while patients with AAV showed significantly higher levels (median 7817 U/mL). The levels did not differ between the SLE subgroups. A significant correlation was found with IMT in the common femoral artery in the SLE cohort, but no association with plaque occurrence was observed. The levels of anti-oxLDL antibodies in the SLE group were significantly higher at inclusion compared to 3 years later (median 5707 versus 1503 U/mL, p < 0.0001). Overall, we found no convincing support for strong associations between vascular affection and anti-oxLDL antibodies in SLE.


Assuntos
Aterosclerose , Lúpus Eritematoso Sistêmico , Placa Aterosclerótica , Humanos , Espessura Intima-Media Carotídea , Lúpus Eritematoso Sistêmico/complicações , Anticorpos , Aterosclerose/complicações , Placa Aterosclerótica/etiologia , Lipoproteínas LDL , Fatores de Risco
16.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894988

RESUMO

Stromal cell-derived factor-1 (SDF-1) is a chemokine that exerts multifaceted roles in atherosclerosis. However, its association with hyperlipidemia is contradictory. To date, serum SDF-1 and its correlations with lipid fractions and subfractions in heterozygous familial hypercholesterolemia (HeFH) have not been investigated. Eighty-one untreated patients with HeFH and 32 healthy control subjects were enrolled in the study. Serum SDF-1, oxidized LDL (oxLDL) and myeloperoxidase (MPO) were determined by ELISA. Lipoprotein subfractions were detected by Lipoprint. We diagnosed FH using the Dutch Lipid Clinic Network criteria. Significantly lower serum SDF-1 was found in HeFH patients compared to healthy controls. Significant negative correlations were detected between serum total cholesterol, triglycerides, LDL-cholesterol (LDL-C), apolipoprotein B100 (ApoB100) and SDF-1. Furthermore, serum SDF-1 negatively correlated with VLDL and IDL, as well as large LDL and large and intermediate HDL subfractions, while there was a positive correlation between mean LDL-size, small HDL and SDF-1. SDF-1 negatively correlated with oxLDL and MPO. A backward stepwise multiple regression analysis showed that the best predictors of serum SDF-1 were VLDL and oxLDL. The strong correlation of SDF-1 with lipid fractions and subfractions highlights the potential common pathways of SDF-1 and lipoprotein metabolism, which supports the role of SDF-1 in atherogenesis.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol , Lipoproteínas , Lipoproteínas LDL , Células Estromais , Triglicerídeos
17.
Int Heart J ; 64(5): 918-927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778995

RESUMO

Circular RNAs (circRNAs) are known to play a crucial role in the progression of atherosclerosis (AS). In this study, we aim to explore the function of oxidized low-density lipoprotein (ox-LDL)-induced macrophage-derived exosomal circ_100696 in AS.THP-1 macrophages were induced by ox-LDL to mimic AS cell model. A quantitative real-time polymerase chain reaction (qRT-PCR) assay was applied to determine the expression of circ_100696, microRNA-503-5p (miR-503-5p), and pregnancy-associated plasma protein A (PAPPA). The morphology and size distribution of exosomes were examined by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Western blot assay was performed for protein levels. Cell proliferation was assessed using 5-ethynyl-2'-deoxyuridine (EdU) assay. Flow cytometry analysis was performed to analyze the cell cycle. Wound-healing assay and transwell assay were done to examine cell migration. RNA pull-down assay, dual-luciferase reporter assay, and RNA immunoprecipitation (RIP) assay were employed to analyze the relationship among circ_100696, miR-503-5p, and PAPPA.Circ_100696 level was increased in ox-LDL-induced THP-1 macrophages and ox-LDL-treated THP-1 macrophage-derived exosomes (OM-Exo). OM-Exo promoted the proliferation, cell cycle, and migration of vascular smooth muscle cells (VSMCs). Circ_100696 was upregulated in VSMCs cocultured with OM-Exo. Circ_100696 knockdown reversed the effects of OM-Exo on VSMC proliferation and migration. Circ_100696 was demonstrated to function as the sponge for miR-503-5p, and miR-503-5p directly targeted PAPPA. Circ_100696 overexpression facilitated VSMC proliferation and migration, with miR-503-5p upregulation or PAPPA silencing reversing these effects. Moreover, circ_100696 overexpression promoted PAPPA expression by targeting miR-503-5p.OM-Exo promoted VSMC growth and migration by regulating the circ_100696/miR-503-5p/PAPPA axis, thereby promoting AS progression.


Assuntos
Aterosclerose , Exossomos , MicroRNAs , RNA Circular , Humanos , Aterosclerose/genética , Proliferação de Células/genética , Exossomos/genética , Lipoproteínas LDL , MicroRNAs/genética , Músculo Liso Vascular , RNA Circular/genética , Células THP-1
18.
J Clin Biochem Nutr ; 73(3): 249-254, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970546

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a new class of potent lipid-lowering drugs. Oxidized low-density lipoprotein (ox-LDL) is the key pathogenic factor leading to atherosclerosis. However, its effect on ox-LDL levels has not been clinically reported. The clinical data of 290 very high-risk atherosclerotic cardiovascular disease (ASCVD) patients diagnosed in the First Affiliated Hospital of Zhengzhou University from May 2022 to October 2022 were collected retrospectively. According to whether evolocumab (a PCSK9 inhibitor) was used after percutaneous coronary intervention (PCI), they were divided into evolocumab group (153 cases) and statin monotherapy group (137 cases). At hospital admission, ox-LDL, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoproteinA1 (apoA1), apolipoprotein B-100 (apoB), lipoprotein (a) [Lp(a)], and high-sensitivity reactive protein (hs-CRP) levels were collected and used as baseline data. After two weeks of treatment, ox-LDL in the evolocumab group and statin monotherapy group were significantly lower than those before treatment (p<0.05). The decrease of ox-LDL in the evolocumab group was more than in the stain monotherapy group (p<0.05). In conclusion, PCSK9 inhibitors reduce ox-LDL levels in very high-risk ASCVD patients in a short time.

19.
Crit Rev Clin Lab Sci ; 59(1): 40-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523391

RESUMO

As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.


Assuntos
Aterosclerose , MicroRNAs , Apoptose , Aterosclerose/genética , Biomarcadores , Células Endoteliais , Humanos , Lipoproteínas LDL , MicroRNAs/genética
20.
J Transl Med ; 20(1): 233, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590369

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a metabolic disease in which patients are prone to develop premature atherosclerosis (AS). Sorbin and SH3 Domain Containing 2 (SORBS2) is known to play a role in coronary heart disease (CHD). However, the mechanism underlying SORBS2 involvement in the development of hypercholesterolemia remains unknown. Here, we investigated the effects of SORBS2 on inflammation and foam cell formation and its underlying mechanisms. METHODS: Using Bioinformatics analysis, we established that SORBS2 is upregulated in patients with FH. Circulating concentrations of SORBS2 were measured using ELISA kit (n = 30). The association between circulating SORBS2 levels and inflammatory factors or lipid indexes were conducted using Spearman correlation analysis. We further conducted in vitro experiments that the expression of SORBS2 were analyzed, and SORBS2 siRNA were transfected into oxidized LDL (OxLDL)-induced macrophages, followed by western blot and immunofluorescence. RESULTS: Circulating SORBS2 levels were positively associated with inflammatory factors and lipid indexes. We also observed that high in vitro expression of SORBS2 in OxLDL-induced macrophages. After SORBS2 silencing, Nod like receptor family pyrin domain-containing 3 protein(NLRP3)-Caspase1 activation and NF-κB activation were attenuated, and secretion of pro-inflammatory cytokines (IL-1ß and IL-18) was decreased. Moreover, SORBS2 silencing blocked reactive oxygen species (ROS) production and lipid accumulation, and promoted cholesterol efflux through ABCG1-PPARγ pathway. CONCLUSIONS: SORBS2 regulates lipid-induced inflammation and foam cell formation, and is a potential therapeutic target for hypercholesterolemia.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/complicações , Aterosclerose/metabolismo , Humanos , Hipercolesterolemia/complicações , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/genética , Inflamassomos/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA