Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(11): 6870-6879, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34428888

RESUMO

Until now, there has been a lack of knowledge regarding the vertical profiles of nitrate formation in the urban boundary layer (BL) based on triple oxygen isotopes. Here, we conducted vertical measurements of the oxygen anomaly of nitrate (Δ17O-NO3-) on a 325 m meteorological tower in urban Beijing during the winter and summer. The simultaneous vertical measurements suggested different formation mechanisms of nitrate aerosols at ground level and 120 and 260 m in the winter due to the less efficient vertical mixing under stable atmospheric conditions. Particularly, different chemical processes of nitrate aerosols at the three heights were found between clean days and polluted days in the winter. On clean days, nocturnal chemistry (NO3 + HC and N2O5 uptake) contributed to nitrate production equally with OH/H2O + NO2 at ground level, while it dominated aloft (contributing 80% of nitrate production at 260 m), due to the higher aerosol liquid water content and O3 concentration there. On polluted days, nocturnal reactions dominated the formation of nitrate at the three heights. Particularly, the contribution of the OH/H2O + NO2 pathway to nitrate production increased from the ground level to 120 m might be attributed to the hydrolysis of NO2 to HONO and then further photolysis to OH radicals in the day. In contrast, the proportion of N2O5 + H2O decreased at 260 m, likely due to the low relative humidity aloft that inhibited the N2O5 hydrolysis reactions in the residual layer. Our results highlighted that the differences between meteorology and gaseous precursors could largely affect particulate nitrate formation at different heights within the polluted urban BL.


Assuntos
Poluentes Atmosféricos , Nitratos , Aerossóis , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Nitratos/análise , Dióxido de Nitrogênio , Óxidos de Nitrogênio/análise , Compostos Orgânicos , Isótopos de Oxigênio/análise , Estações do Ano
2.
Proc Natl Acad Sci U S A ; 112(2): 336-41, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25535348

RESUMO

Carbonate minerals provide critical information for defining atmosphere-hydrosphere interactions. Carbonate minerals in the Martian meteorite ALH 84001 have been dated to ∼ 3.9 Ga, and both C and O-triple isotopes can be used to decipher the planet's climate history. Here we report Δ(17)O, δ(18)O, and δ(13)C data of ALH 84001 of at least two varieties of carbonates, using a stepped acid dissolution technique paired with ion microprobe analyses to specifically target carbonates from distinct formation events and constrain the Martian atmosphere-hydrosphere-geosphere interactions and surficial aqueous alterations. These results indicate the presence of a Ca-rich carbonate phase enriched in (18)O that formed sometime after the primary aqueous event at 3.9 Ga. The phases showed excess (17)O (0.7‰) that captured the atmosphere-regolith chemical reservoir transfer, as well as CO2, O3, and H2O isotopic interactions at the time of formation of each specific carbonate. The carbon isotopes preserved in the Ca-rich carbonate phase indicate that the Noachian atmosphere of Mars was substantially depleted in (13)C compared with the modern atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA