Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(1): 156-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870650

RESUMO

AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo
2.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
3.
J Biol Chem ; 296: 100297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460647

RESUMO

The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/enzimologia , Glucagon/biossíntese , N-Acetilglucosaminiltransferases/genética , Obesidade/genética , Acilação/efeitos dos fármacos , Animais , Jejum/metabolismo , Feminino , Efeito Fundador , Glucagon/deficiência , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/patologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Teste de Tolerância a Glucose , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Resistência à Insulina , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/deficiência , Obesidade/enzimologia , Obesidade/patologia , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia
4.
J Biol Chem ; 296: 100646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839150

RESUMO

Dysregulated glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. Although insulin is known to regulate glucagon secretion via its cognate receptor (insulin receptor, INSR) in pancreatic alpha cells, the role of downstream proteins and signaling pathways underlying insulin's activities are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 and IRS2 in regulating alpha cell function. Alpha cell-specific IRS1-knockout mice exhibited glucose intolerance and inappropriate glucagon suppression during glucose tolerance tests. In contrast, alpha cell-specific IRS2-knockout animals manifested normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable IRS1 knockdown could not repress glucagon mRNA expression and exhibited a reduction in phosphorylation of AKT Ser/Thr kinase (AKT, at Ser-473 and Thr-308). AlphaIRS1KD cells also displayed suppressed global protein translation, including reduced glucagon expression, impaired cytoplasmic Ca2+ response, and mitochondrial dysfunction. This was supported by the identification of novel IRS1-specific downstream target genes, Trpc3 and Cartpt, that are associated with glucagon regulation in alpha cells. These results provide evidence that IRS1, rather than IRS2, is a dominant regulator of pancreatic alpha cell function.


Assuntos
Células Secretoras de Glucagon/patologia , Glucagon/metabolismo , Intolerância à Glucose/patologia , Proteínas Substratos do Receptor de Insulina/fisiologia , Resistência à Insulina , Animais , Feminino , Células Secretoras de Glucagon/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais
5.
Diabetologia ; 62(7): 1212-1224, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30953108

RESUMO

AIMS/HYPOTHESIS: Glucagon is critical for normal glucose homeostasis and aberrant secretion of the hormone aggravates dysregulated glucose control in diabetes. However, the mechanisms by which glucose controls glucagon secretion from pancreatic alpha cells remain elusive. The aim of this study was to investigate the role of the intracellular messenger cAMP in alpha-cell-intrinsic glucose regulation of glucagon release. METHODS: Subplasmalemmal cAMP and Ca2+ concentrations were recorded in isolated and islet-located alpha cells using fluorescent reporters and total internal reflection microscopy. Glucagon secretion from mouse islets was measured using ELISA. RESULTS: Glucose induced Ca2+-independent alterations of the subplasmalemmal cAMP concentration in alpha cells that correlated with changes in glucagon release. Glucose-lowering-induced stimulation of glucagon secretion thus corresponded to an elevation in cAMP that was independent of paracrine signalling from insulin or somatostatin. Imposed cAMP elevations stimulated glucagon secretion and abolished inhibition by glucose elevation, while protein kinase A inhibition mimicked glucose suppression of glucagon release. CONCLUSIONS/INTERPRETATION: Glucose concentrations in the hypoglycaemic range control glucagon secretion by directly modulating the cAMP concentration in alpha cells independently of paracrine influences. These findings define a novel mechanism for glucose regulation of glucagon release that underlies recovery from hypoglycaemia and may be disturbed in diabetes.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Glucose/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Somatostatina/metabolismo
6.
J Endocrinol ; 260(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888975

RESUMO

Long lagging behind insulin, glucagon research has caught up in large part, thanks to technological breakthroughs. Here we review how the field was propelled by the development of novel techniques and approaches. The glucagon radioimmunoassay and islet isolation are methods that now seem trivial, but for decades they were crucial in defining the biology of the pancreatic alpha cell and the role of glucagon in glucose homeostasis. More recently, mouse models have become the main workhorse of this research effort, if not of biomedical research in general. The mouse model allowed detailed mechanistic studies that are revealing alpha cell functions beyond its canonical glucoregulatory role. A recent profusion of gene expression and transcription regulation studies is providing new vistas into what constitutes alpha cell identity. In particular, the combination of transcriptomic techniques with functional recordings promises to move molecular guesswork into real-time physiology. The challenge right now is not to get enamored with these powerful techniques and to make sure that the research continues to be transformative and paradigm shifting. We should imagine a future in which the biology of the alpha cell will be studied at single-cell resolution, non-invasively, and in real time in the human body.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Animais de Doenças , Ilhotas Pancreáticas/metabolismo
7.
Biomedicines ; 12(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397919

RESUMO

Posttransplant diabetes mellitus (PTDM) is a common complication after kidney transplantation. Pathophysiologically, whether beta-cell dysfunction rather than insulin resistance may be the predominant defect in PTDM has been a matter of debate. The aim of the present analysis was to compare glucometabolism in kidney transplant recipients with and without PTDM. To this aim, we included 191 patients from a randomized controlled trial who underwent oral glucose tolerance tests (OGTTs) 6 months after transplantation. We derived several basic indices of beta-cell function and insulin resistance as well as variables from mathematical modeling for a more robust beta-cell function assessment. Mean ± standard deviation of the insulin sensitivity parameter PREDIM was 3.65 ± 1.68 in PTDM versus 5.46 ± 2.57 in NON-PTDM. Model-based glucose sensitivity (indicator of beta-cell function) was 68.44 ± 57.82 pmol∙min-1∙m-2∙mM-1 in PTDM versus 143.73 ± 112.91 pmol∙min-1∙m-2∙mM-1 in NON-PTDM, respectively. Both basic indices and model-based parameters of beta-cell function were more than 50% lower in patients with PTDM, indicating severe beta-cell impairment. Nonetheless, some defects in insulin sensitivity were also present, although less marked. We conclude that in PTDM, the prominent defect appears to be beta-cell dysfunction. From a pathophysiological point of view, patients at high risk for developing PTDM may benefit from intensive treatment of hyperglycemia over the insulin secretion axis.

8.
Cell Rep ; 41(11): 111792, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516761

RESUMO

Glucagon secretion from pancreatic alpha cells is crucial to prevent hypoglycemia. People with type 1 diabetes lose this glucoregulatory mechanism and are susceptible to dangerous hypoglycemia for reasons still unclear. Here we determine that alpha cells in living pancreas slices from donors with type 1 diabetes do not mount an adequate glucagon response and cannot activate the positive autocrine feedback mediated by AMPA/kainate glutamate receptors. This feedback is required to elicit full glucagon responses in the healthy state. Reactivating residual AMPA/kainate receptor function with positive allosteric modulators restores glucagon secretion in human slices from donors with type 1 diabetes as well as glucose counterregulation in non-obese diabetic mice. Our study thus identifies a defect in autocrine signaling that contributes to alpha cell failure. The use of positive allosteric modulators of AMPA/kainate receptors overcomes this deficiency and prevents hypoglycemia, an effect that could be used to improve the management of diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagon , Hipoglicemia , Camundongos , Animais , Humanos , Glucagon , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Receptores de Glutamato , Insulina , Glicemia
9.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919776

RESUMO

Glucose metabolism plays a crucial role in modulating glucagon secretion in pancreatic alpha cells. However, the downstream effects of glucose metabolism and the activated signaling pathways influencing glucagon granule exocytosis are still obscure. We developed a computational alpha cell model, implementing metabolic pathways of glucose and free fatty acids (FFA) catabolism and an intrinsically activated cAMP signaling pathway. According to the model predictions, increased catabolic activity is able to suppress the cAMP signaling pathway, reducing exocytosis in a Ca2+-dependent and Ca2+ independent manner. The effect is synergistic to the pathway involving ATP-dependent closure of KATP channels and consequent reduction of Ca2+. We analyze the contribution of each pathway to glucagon secretion and show that both play decisive roles, providing a kind of "secure double switch". The cAMP-driven signaling switch plays a dominant role, while the ATP-driven metabolic switch is less favored. The ratio is approximately 60:40, according to the most recent experimental evidence.


Assuntos
AMP Cíclico/metabolismo , Glucagon/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Metaboloma , Modelos Biológicos , Transdução de Sinais
10.
Metabolism ; 102: 153963, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593706

RESUMO

BACKGROUND: Pregnancy represents a major metabolic challenge for the mother, and involves a compensatory response of the pancreatic beta-cell to maintain normoglycemia. However, although pancreatic alpha-cells play a key role in glucose homeostasis and seem to be involved in gestational diabetes, there is no information about their potential adaptations or changes during pregnancy. MATERIAL AND METHODS: Non-pregnant (controls) and pregnant C57BL/6 mice at gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for in vivo and ex vivo studies, respectively. The effect of pregnancy hormones was tested in glucagon-secreting α-TC1.9 cells. Immunohistochemical analysis was performed in pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon secretion and plasma hormones were measured by ELISA. RESULTS: Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta transdifferentiation were found compared with controls. Pregnant mice on G18.5 exhibited hypoglucagonemia. Additionally, in vitro glucagon secretion at low glucose levels was decreased in isolated islets from pregnant animals. Glucagon content was also reduced. Experiments in α-TC1.9 cells indicated that, unlike estradiol and progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation. Placental lactogens, prolactin and estradiol also inhibited glucagon release from α-TC1.9 cells at low glucose levels. CONCLUSIONS: The pancreatic alpha-cell in mice undergoes several morphofunctional changes during late pregnancy, which may contribute to proper glucose homeostasis. Gestational hormones are likely involved in these processes.


Assuntos
Adaptação Fisiológica/fisiologia , Idade Gestacional , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/fisiologia , Animais , Contagem de Células , Tamanho Celular , Células Cultivadas , Feminino , Glucagon/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Placentários/fisiologia , Gravidez
11.
Cell Metab ; 28(5): 787-792.e3, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30057067

RESUMO

Recent reports identified activation of the GABA signaling pathway as a means to induce transdifferentiation of pancreatic α cells into ß cells. These reports followed several previous studies that found that α cells were particularly well suited to conversion into ß cells in mice, but only after nearly complete ß cell loss or forced overexpression of key transcriptional regulators. The possibility of increasing ß cell number via reprograming of α cells with a small molecule is enticing, as this could be a potential new pharmacologic therapy for diabetes. Here, we employed rigorous genetic lineage tracing of α cells, using Glucagon-CreERT2;Rosa-LSL-eYFP mice, to evaluate if activation of GABA signaling caused α-to-ß cell reprogramming. In contrast to previous reports, we found that even after long-term treatment of mice with artesunate or GABA, neither α-to-ß cell transdifferentiation nor insulin secretion were stimulated, putting into question whether these agents represent a viable path to a novel diabetes therapy.


Assuntos
Artesunato/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Artesunato/administração & dosagem , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Teste de Tolerância a Glucose , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/administração & dosagem
12.
Endocrine ; 62(2): 394-403, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30084102

RESUMO

PURPOSE: Proglucagon is expressed in both pancreatic alpha cells and intestinal epithelial L cells and is cleaved into glucagon and glucagon-like peptide-1 (GLP-1) by different prohormone convertases (PCs). Recent studies have shown that α-cells can also secrete GLP-1, which may improve islet function. However, little is known about the factors influencing GLP-1 secretion by α cells. In this study, we investigated whether insulin promotes GLP-1 secretion by α cells, as well as the mechanisms underlying this phenomenon. METHODS: We cultured the alpha-cell line In-R1-G9 in low- or high-glucose medium in the presence or absence of insulin to determine the influence of glucose concentrations on the actions of insulin. We also treated In-R1-G9 cells with insulin for different times and at different doses. Then GLP-1 and glucagon protein expression levels were estimated. Moreover, ERK and phosphatidylinositol-3-kinase/AKT (PI3K/AKT) pathway activity levels and prohormone convertase expression levels were evaluated to elucidate the mechanism underlying the effects of insulin on GLP-1 secretion by α-cells. RESULTS: Insulin promoted GLP-1 secretion in a time- and dose-dependent manner under high-glucose conditions. Inhibiting the PI3K/AKT pathway with LY294002 and the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway with PD98059 reduced GLP-1 secretion, respectively, in inhibitor-treated cells compared with insulin-treated cells. Moreover, insulin increased prohormone convertase 1/3 expression levels in the corresponding group of IN-R1-G9 cells compared with the control group of cells. CONCLUSION: Insulin facilitates GLP-1 secretion by pancreatic alpha cells by inducing PC1/3 expression under high-glucose conditions, a phenomenon that may be associated mainly with PI3K/AKT pathway activation.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Insulina/farmacologia , Células Cultivadas , Glucagon/metabolismo , Glucose/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via Secretória/efeitos dos fármacos
13.
Cell Metab ; 25(6): 1348-1361.e8, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591637

RESUMO

Glucagon supports glucose homeostasis by stimulating hepatic gluconeogenesis, in part by promoting the uptake and conversion of amino acids into gluconeogenic precursors. Genetic disruption or pharmacologic inhibition of glucagon signaling results in elevated plasma amino acids and compensatory glucagon hypersecretion involving expansion of pancreatic α cell mass. Recent findings indicate that hyperaminoacidemia triggers pancreatic α cell proliferation via an mTOR-dependent pathway. We confirm and extend these findings by demonstrating that glucagon pathway blockade selectively increases expression of the sodium-coupled neutral amino acid transporter Slc38a5 in a subset of highly proliferative α cells and that Slc38a5 controls the pancreatic response to glucagon pathway blockade; most notably, mice deficient in Slc38a5 exhibit markedly decreased α cell hyperplasia to glucagon pathway blockade-induced hyperaminoacidemia. These results show that Slc38a5 is a key component of the feedback circuit between glucagon receptor signaling in the liver and amino-acid-dependent regulation of pancreatic α cell mass in mice.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Glucagon/genética , Células Secretoras de Glucagon/patologia , Hiperplasia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Receptores de Glucagon/genética
14.
Elife ; 4: e06990, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26061776

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic ß cells via apoptosis while neighboring α cells are preserved. Viral infections by coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and ß cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than ß cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than ß cells. These differences may explain why pancreatic ß cells, but not α cells, are targeted by an autoimmune response during T1D.


Assuntos
Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Células Secretoras de Glucagon/imunologia , Células Secretoras de Glucagon/virologia , Imunidade Inata , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/virologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA