Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269432

RESUMO

Retinal ganglion cells (RGCs) encrypt stimulus features of the visual scene in action potentials and convey them toward higher visual centers in the brain. Although there are many visual features to encode, our recent understanding is that the ~46 different functional subtypes of RGCs in the retina share this task. In this scheme, each RGC subtype establishes a separate, parallel signaling route for a specific visual feature (e.g., contrast, the direction of motion, luminosity), through which information is conveyed. The efficiency of encoding depends on several factors, including signal strength, adaptational levels, and the actual efficacy of the underlying retinal microcircuits. Upon collecting inputs across their respective receptive field, RGCs perform further analysis (e.g., summation, subtraction, weighting) before they generate the final output spike train, which itself is characterized by multiple different features, such as the number of spikes, the inter-spike intervals, response delay, and the rundown time (transience) of the response. These specific kinetic features are essential for target postsynaptic neurons in the brain in order to effectively decode and interpret signals, thereby forming visual perception. We review recent knowledge regarding circuit elements of the mammalian retina that participate in shaping RGC response transience for optimal visual signaling.


Assuntos
Retina , Células Ganglionares da Retina , Potenciais de Ação , Animais , Encéfalo , Mamíferos , Percepção Visual
2.
Dev Neurobiol ; 77(7): 891-904, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27739221

RESUMO

Neural circuit development involves the coordinated growth and guidance of axons to their targets. Following the identification of many guidance cue molecules, recent experiments have focused on the interactions of their signaling cascades, which can be generally classified as additive or non-additive depending on the signal convergence point. While additive (parallel) signaling suggests limited molecular interaction between the pathways, non-additive signaling involves crosstalk between pathways and includes more complex synergistic, hierarchical, and permissive guidance cue relationships. Here the authors have attempted to classify recent studies that describe axon guidance signal integration according to these divisions. They also discuss the mechanistic implications of such interactions, as well as general ideas relating signal integration to the generation of diversity of axon guidance responses. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 891-904, 2017.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Sinais (Psicologia) , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Axônios/metabolismo , Humanos , Rede Nervosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA