Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 747661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745181

RESUMO

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

2.
Plants (Basel) ; 9(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784636

RESUMO

Many strains of Trichoderma fungi have beneficial effects on plant growth and pathogen control, but little is known about the importance of plant genotype, nor the underlying mechanisms. We aimed to determine the effect of sugar beet genotypic variation on Trichoderma biostimulation. The effect of Trichoderma afroharzianum T22 on sugar beet inbred genotypes were investigated in soil and on sterile agar medium regarding plant growth, and by quantitative reverse transcriptase-linked polymerase chain reaction (qRT-PCR) analysis for gene expression. In soil, T22 application induced up to 30% increase or decrease in biomass, depending on plant genotype. In contrast, T22 treatment of sterile-grown seedlings resulted in a general decrease in fresh weight and root length across all sugar beet genotypes. Root colonization of T22 did not vary between the sugar beet genotypes. Sand- and sterile-grown roots were investigated by qRT-PCR for expression of marker genes for pathogen response pathways. Genotype-dependent effects of T22 on, especially, the jasmonic acid/ethylene expression marker PR3 were observed, and the effects were further dependent on the growth system used. Thus, both growth substrate and sugar beet genotype strongly affect the outcome of inoculation with T. afroharzianum T22.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA