Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Genomics ; 23(1): 175, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35240994

RESUMO

BACKGROUND: Diaporthe caulivora is a fungal pathogen causing stem canker in soybean worldwide. The generation of genomic and transcriptomic information of this ascomycete, together with a comparative genomic approach with other pathogens of this genus, will contribute to get insights into the molecular basis of pathogenicity strategies used by D. caulivora and other Diaporthe species. RESULTS: In the present work, the nuclear genome of D. caulivora isolate (D57) was resolved, and a comprehensive annotation based on gene expression and genomic analysis is provided. Diaporthe caulivora D57 has an estimated size of 57,86 Mb and contains 18,385 predicted protein-coding genes, from which 1501 encode predicted secreted proteins. A large array of D. caulivora genes encoding secreted pathogenicity-related proteins was identified, including carbohydrate-active enzymes (CAZymes), necrosis-inducing proteins, oxidoreductases, proteases and effector candidates. Comparative genomics with other plant pathogenic Diaporthe species revealed a core secretome present in all Diaporthe species as well as Diaporthe-specific and D. caulivora-specific secreted proteins. Transcriptional profiling during early soybean infection stages showed differential expression of 2659 D. caulivora genes. Expression patterns of upregulated genes and gene ontology enrichment analysis revealed that host infection strategies depends on plant cell wall degradation and modification, detoxification of compounds, transporter activities and toxin production. Increased expression of effectors candidates suggests that D. caulivora pathogenicity also rely on plant defense evasion. A high proportion of the upregulated genes correspond to the core secretome and are represented in the pathogen-host interaction (PHI) database, which is consistent with their potential roles in pathogenic strategies of the genus Diaporthe. CONCLUSIONS: Our findings give novel and relevant insights into the molecular traits involved in pathogenicity of D. caulivora towards soybean plants. Some of these traits are in common with other Diaporthe pathogens with different host specificity, while others are species-specific. Our analyses also highlight the importance to have a deeper understanding of pathogenicity functions among Diaporthe pathogens and their interference with plant defense activation.


Assuntos
Ascomicetos , Transcriptoma , Ascomicetos/fisiologia , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012636

RESUMO

Lipases are enzymes that hydrolyze triglycerides to fatty acids and glycerol. A typical element in lipases is a conserved motif of five amino acids (the pentapeptide), most commonly G-X-S-X-G. Lipases with the pentapeptide A-X-S-X-G are present in species of Bacillus, Paucimonas lemoignei, and the yeast Trichosporon asahii; they are usually thermotolerant and solvent resistant. Recently, while searching for true lipases in the Trichoderma harzianum genome, one lipase containing the pentapeptide AHSMG was identified. In this study, we cloned from T. harzianum strain B13-1 the lipase ID135964, renamed here as ThaL, which is 97.65% identical with the reference. We found that ThaL is a lid-containing true lipase of cluster III that belongs to a large family comprising highly conserved proteins in filamentous fungi in the orders Hypocreales and Glomerellales, in which predominantly pathogenic fungi are found. ThaL was expressed in conidia, as well as in T. harzianum mycelium, where it was cultured in liquid minimal medium. These results-together with the amino acid composition, absence of a signal peptide, mitochondrial sorting prediction, disordered regions in the protein, and lineage-specific phylogenetic distribution of its homologs-suggest that ThaL is a non-canonical effector. In summary, AHSMG-lipase is a novel lipase family in filamentous fungi, and is probably involved in pathogenicity.


Assuntos
Bacillus , Hypocreales , Bacillus/metabolismo , Fungos/metabolismo , Hypocreales/metabolismo , Lipase/metabolismo , Filogenia , Pseudomonas/metabolismo
3.
BMC Genomics ; 22(1): 734, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627148

RESUMO

BACKGROUND: The fungal pathogen Fusarium oxysporum f.sp. pisi (Fop) causes Fusarium wilt in peas. There are four races globally: 1, 2, 5 and 6 and all of these races are present in Australia. Molecular infection mechanisms have been studied in a few other F. oxysporum formae speciales; however, there has been no transcriptomic Fop-pea pathosystem study. RESULTS: A transcriptomic study was carried out to understand the molecular pathogenicity differences between the races. Transcriptome analysis at 20 days post-inoculation revealed differences in the differentially expressed genes (DEGs) in the Fop races potentially involved in fungal pathogenicity variations. Most of the DEGs in all the races were engaged in transportation, metabolism, oxidation-reduction, translation, biosynthetic processes, signal transduction, proteolysis, among others. Race 5 expressed the most virulence-associated genes. Most genes encoding for plant cell wall degrading enzymes, CAZymes and effector-like proteins were expressed in race 2. Race 6 expressed the least number of genes at this time point. CONCLUSION: Fop races deploy various factors and complex strategies to mitigate host defences to facilitate colonisation. This investigation provides an overview of the putative pathogenicity genes in different Fop races during the necrotrophic stage of infection. These genes need to be functionally characterised to confirm their pathogenicity/virulence roles and the race-specific genes can be further explored for molecular characterisation.


Assuntos
Fusarium , Fusarium/genética , Pisum sativum , Doenças das Plantas/genética , Transcriptoma , Virulência
4.
BMC Genomics ; 22(1): 766, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702162

RESUMO

BACKGROUND: The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. RESULTS: C. paspali isolates had compact genomes and secretome which accounted for 4.6-4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. CONCLUSIONS: Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.


Assuntos
Claviceps , Micotoxinas , Paspalum , Animais , Bovinos , Claviceps/genética , Virulência
5.
Curr Genet ; 67(6): 981-990, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34432124

RESUMO

Teratosphaeria destructans is one of the most aggressive foliar pathogens of Eucalyptus. The biological factors underpinning T. destructans infections, which include shoot and leaf blight on young trees, have never been interrogated. Thus, the means by which the pathogen modifies its host environment to overcome host defences remain unknown. By applying transcriptome sequencing, the aim of this study was to compare gene expression in a South African isolate of T. destructans grown on nitrogen-deficient and complete media. This made it possible to identify upregulated genes in a nitrogen-starved environment, often linked to the pathogenicity of the fungus. The results support the hypothesis that nitrogen starvation in T. destructans likely mirrors an in planta genetic response. This is because 45% of genes that were highly upregulated under nitrogen starvation have previously been reported to be associated with infection in other pathogen systems. These included several CAZymes, fungal effector proteins, peptidases, kinases, toxins, lipases and proteins associated with detoxification of toxic compounds. Twenty-five secondary metabolites were identified and expressed in both nitrogen-deficient and complete conditions. Additionally, the most highly expressed genes in both growth conditions had pathogenicity-related functions. This study highlights the large number of expressed genes associated with pathogenicity and overcoming plant defences. As such, the generated baseline knowledge regarding pathogenicity and aggressiveness in T. destructans is a valuable reference for future in planta work.


Assuntos
Ascomicetos/fisiologia , Eucalyptus/microbiologia , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Nitrogênio/metabolismo , Doenças das Plantas/microbiologia , Biologia Computacional/métodos , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , RNA-Seq , Metabolismo Secundário/genética , Transcriptoma
6.
J Fish Dis ; 44(1): 89-105, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32971569

RESUMO

Tropical shrimp, like Litopenaeus vannamei, in land-based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.


Assuntos
Aquicultura , Penaeidae/microbiologia , Salinidade , Água do Mar/microbiologia , Vibrio/classificação , Animais , Carga Bacteriana , Inocuidade dos Alimentos , Genes Bacterianos , Alimentos Marinhos/microbiologia , Água do Mar/química , Vibrio/patogenicidade , Vibrioses/veterinária , Fatores de Virulência/genética
7.
Klin Lab Diagn ; 66(8): 502-508, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388322

RESUMO

Corynebacterium spp. - representatives of the normal microflora of the human body, but their role in the development of diseases in both immunocompromised and immunocompetent patients is known. Corynebacterim spp. (C. pseudodiphtheriticum, C. striatum, C. amycolatum, C. accolens, C. argentoratense, etc.) is associated with diseases of the respiratory tract: tracheitis, pharyngitis, rhinosinusitis, bronchitis, etc. They can be transmitted by airborne droplets, household contact, and possibly by hematogenic pathways. Corynebacterim spp. toxins do not produce, but are capable of adhesion and invasion, biofilm formation, production of neuraminidase, hyaluronidase, and hemolysin. It is necessary to take into account not so much the species, but the strain affiliation of isolates of Corynebacterium spp., since among the representatives of one species of non-diphtheria corynebacteria (for example, C. pseudodiphtheriticum), colonizing the respiratory tract, there may be strains that can exhibit not only pathogenic properties, but also probiotic activity. Microbiological diagnostics is based on their quantitative determination in biological material, phenotypic (culture study, test systems for biochemical identification, Vitek 2 automated systems) and genotypic (16SpRNA gene sequencing and rpoB) methods. It is possible to use mass spectrometric analysis (MALDI-ToF-MS). The greatest activity against Corynebacterium spp. in vitro studies preserve vancomycin, teicoplanin, and linezolid. Successful therapy with at least two of the following antimicrobial agents (AMP) has been reported: vancomycin, rifampicin, linezolid, and daptomycin. The sensitivity of isolates of Corynebacterium spp. to AMP is not related to the species, but is due to strain differences, and therefore it is necessary to test each isolated strain. Continuous monitoring of the sensitivity of Corynebacterium spp. strains to AMP is necessary due to the observed variability of these traits. Of particular importance is the identification of multidrug-resistant isolates that are currently considered highly pathogenic. When compiling the review, the databases Scopus, Web of Science, The Cochrane Library, CyberLeninka, RSCI were used.


Assuntos
Bronquite , Infecções por Corynebacterium , Antibacterianos/farmacologia , Corynebacterium/genética , Infecções por Corynebacterium/diagnóstico , Humanos , Testes de Sensibilidade Microbiana , Sistema Respiratório , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
BMC Microbiol ; 20(1): 342, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176679

RESUMO

BACKGROUND: Members of the genus Aspergillus display a variety of lifestyles, ranging from saprobic to pathogenic on plants and/or animals. Increased genome sequencing of economically important members of the genus permits effective use of "-omics" comparisons between closely related species and strains to identify candidate genes that may contribute to phenotypes of interest, especially relating to pathogenicity. Protein-coding genes were predicted from 216 genomes of 12 Aspergillus species, and the frequencies of various structural aspects (exon count and length, intron count and length, GC content, and codon usage) and functional annotations (InterPro, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes terms) were compared. RESULTS: Using principal component analyses, the three sets of functional annotations for each strain were clustered by species. The species clusters appeared to separate by pathogenicity on plants along the first dimensions, which accounted for over 20% of the variance. More annotations for genes encoding pectinases and secondary metabolite biosynthetic enzymes were assigned to phytopathogenic strains from species such as Aspergillus flavus. In contrast, Aspergillus fumigatus strains, which are pathogenic to animals but not plants, were assigned relatively more terms related to phosphate transferases, and carbohydrate and amino-sugar metabolism. Analyses of publicly available RNA-Seq data indicated that one A. fumigatus protein among 17 amino-sugar processing candidates, a hexokinase, was up-regulated during co-culturing with human immune system cells. CONCLUSION: Genes encoding hexokinases and other proteins of interest may be subject to future manipulations to further refine understanding of Aspergillus pathogenicity factors.


Assuntos
Aspergillus/genética , Fatores de Virulência/genética , Animais , Aspergillus/classificação , Aspergillus/patogenicidade , Genes Fúngicos/genética , Genoma Fúngico/genética , Hexoquinase/genética , Humanos , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia
9.
Microb Pathog ; 136: 103680, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442573

RESUMO

The biotrophic fungus, Erysiphe pisi is the chief causal agent of powdery mildew disease of garden pea. A genome-wide search using in-silico approach was carried to detect putative pathogenicity and virulence genes of E. pisi, since information about these genes and their interaction with pea is limited. Nineteen putative pathogenicity gene sequences were detected through genome-wide pathogenicity gene-search and confirmed them to be conserved in E. pisi through genomic PCRs. Fifteen of these genes expressed through reverse transcriptase-polymerase chain reaction (RT-PCR) amplifying expected band size along with fungal and plant specific internal controls. Gene sequencing and annotation revealed them to be Erysiphe-specific. A time course study was carried to monitor expression of nine of these genes through real-time quantitative (qRT)-PCR in Erysiphe-challenged plants of powdery mildew resistant pea genotype, JI-2480 carrying er2 gene and susceptible pea cultivar, Arkel. Expression of these genes was differentially and temporally regulated. They were found mostly related to signaling; cAMP-PKA (cPKA, CRP and AC) and MAPK (MST7) pathways along with MFP, TRE and PEX which are reported pathogenicity factors in other ascomycete members indicating that similar conserved pathways function in E. pisi also. These genes expressed at higher level at initial hours post inoculation (hpi) as early as 6 hpi in Arkel compared to JI-2480 implying them as pathogenicity factors. The elevated level of expression of MFP, TRE, CRP and cPKA gene sequences in E. pisi-challenged JI-2480 genotype at 12 hpi alone suggests these genes to possess a role in avirulence in JI-2480, conferring er2 mediated resistance.


Assuntos
Ascomicetos/patogenicidade , Pisum sativum/imunologia , Pisum sativum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fatores de Virulência/genética , Ascomicetos/genética , Biologia Computacional , Resistência à Doença , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma Fúngico , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
World J Microbiol Biotechnol ; 35(7): 105, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267317

RESUMO

Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Proteoma , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genoma Fúngico , Musa/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espectrometria de Massas em Tandem , Virulência
11.
BMC Genomics ; 19(1): 509, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969982

RESUMO

BACKGROUND: The hemibiotrophic pathogens Moniliophthora perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot disease) are among the most important pathogens of cacao. Moniliophthora perniciosa has a broad host range and infects a variety of meristematic tissues in cacao plants, whereas M. roreri infects only pods of Theobroma and Herrania genera. Comparative pathogenomics of these fungi is essential to understand Moniliophthora infection strategies, therefore the detection and in silico functional characterization of effector candidates are important steps to gain insight on their pathogenicity. RESULTS: Candidate secreted effector proteins repertoire were predicted using the genomes of five representative isolates of M. perniciosa subpopulations (three from cacao and two from solanaceous hosts), and one representative isolate of M. roreri from Peru. Many putative effectors candidates were identified in M. perniciosa: 157 and 134 in cacao isolates from Bahia, Brazil; 109 in cacao isolate from Ecuador, 92 and 80 in wild solanaceous isolates from Minas Gerais (Lobeira) and Bahia (Caiçara), Brazil; respectively. Moniliophthora roreri showed the highest number of effector candidates, a total of 243. A set of eight core effectors were shared among all Moniliophthora isolates, while others were shared either between the wild solanaceous isolates or among cacao isolates. Mostly, candidate effectors of M. perniciosa were shared among the isolates, whereas in M. roreri nearly 50% were exclusive to the specie. In addition, a large number of cell wall-degrading enzymes characteristic of hemibiotrophic fungi were found. From these, we highlighted the proteins involved in cell wall modification, an enzymatic arsenal that allows the plant pathogens to inhabit environments with oxidative stress, which promotes degradation of plant compounds and facilitates infection. CONCLUSIONS: The present work reports six genomes and provides a database of the putative effectorome of Moniliophthora, a first step towards the understanding of the functional basis of fungal pathogenicity.


Assuntos
Agaricales/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Agaricales/classificação , Agaricales/isolamento & purificação , Brasil , Cacau/microbiologia , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Proteínas Fúngicas/genética , Filogenia , Sequenciamento Completo do Genoma
12.
Mol Biol (Mosk) ; 52(4): 644-658, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30113030

RESUMO

To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.


Assuntos
Hemaglutininas/genética , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/genética , Neuraminidase/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Substituição de Aminoácidos/genética , Animais , Galinhas , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Mutação , Replicação Viral/genética
13.
Klin Lab Diagn ; 63(6): 375-378, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30702232

RESUMO

Сorynebacteria non-diphtheria of С. pseudodiphtheriticum strains, despite the absence of the ability to produce toxin, can be associated with the development of inflammatory diseases of the respiratory and urogenital tract, skin, purulent-septic processes of various localization, etc. This indicates the presence of other pathogenicity factors, in addition to toxin, which may be adhesive and invasive activity. Characteristics of pathogenicity factors (adhesiveness and invasiveness) of Corynebacteria non-diphtheria isolated from patients with pathology of the respiratory tract. The strains of Corynebacteria non-diphtheria (38) isolated from the upper respiratory tract from patients with chronic tonsillitis (C. pseudodiphtheriticum - 9) and angina (C. pseudodiphtheriticum - 14 pcs.), As well as practically healthy subjects (C. pseudodiphtheriticum - 15 pcs.). The ability for adhesion and invasion of corynebacteria was studied on the culture of the cells of the pharyngeal epithelium Hep-2 carcinoma. The number of corynebacteria, adherent and invaded on Hep-2 cells, was determined by sowing the flush with 20% serum agar, followed by counting the average number of colony forming units (CFU) per 1 ml. Electron microscopic investigation of adhesion and invasion of corynebacteria on the culture of Hep-2 cells was carried out by transmission electron microscopy. The adhesiveness of strains of C. pseudodiphtheriticum isolated from practically healthy individuals was lower (p≤0,05) than that of all the investigated strains of Corynebacteria non-diphtheria isolated from patients with pathology of the respiratory tract. The most pronounced adhesive properties (238.3±6.5 CFU/ml) were found in C. pseudodiphtheriticum strains isolated from patients with angina compared with those isolated from patients with chronic tonsillitis. Adhesiveness and invasiveness in all strains studied had a positive correlation. Electron microscopic examination shows corynebacteria, both adherent to the surface of Hep-2 cells and accumulated contrast medium, and invasive, electron-transparent. Corynebacteria non-diphtheria of C. pseudodiphtheriticum strains isolated from patients with respiratory tract pathology (angina, chronic tonsillitis) had a higher ability to adhere and invade than C. dodiphtheriticum strains isolated from practically healthy individuals. The pronounced ability for adhesion and invasion, considered as pathogenicity factors of C. pseudodiphtheriticum, allows them to realize their pathogenic potential, protecting against the action of the host's immune system and antibacterial drugs.


Assuntos
Corynebacterium/patogenicidade , Doenças Respiratórias/microbiologia , Aderência Bacteriana , Linhagem Celular Tumoral , Humanos , Virulência
14.
Bull Exp Biol Med ; 160(4): 502-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26899849

RESUMO

Cytomorphological signs of bacterial infection agents were studied by atomic force microscopy. Analysis of the elastic mechanical characteristics of Staphylococcus spp. from the skin of patients with chronic dermatoses showed lower elasticity of S. aureus cell membrane in comparison with that of transitory flora representatives. Significant differences in characteristics of cell membrane relief and presence of fimA pathogenicity factor were detected in E. coli isolated from the reproductive tract mucosa of clinically healthy women and patients with inflammatory urogenital infections.


Assuntos
Colo do Útero/microbiologia , Escherichia coli/isolamento & purificação , Mucosa/microbiologia , Dermatopatias/microbiologia , Pele/microbiologia , Staphylococcus/isolamento & purificação , Membrana Celular/fisiologia , Escherichia coli/metabolismo , Feminino , Proteínas de Fímbrias/metabolismo , Humanos , Microscopia de Força Atômica , Staphylococcus/classificação
15.
Microb Physiol ; 34(1): 133-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636461

RESUMO

BACKGROUND: The gut microbiome is integral to host health, hosting complex interactions between the host and numerous microbial species in the gastrointestinal tract. Key among the molecular mechanisms employed by gut bacteria are transportomes, consisting of diverse transport proteins crucial for bacterial adaptation to the dynamic, nutrient-rich environment of the mammalian gut. These transportomes facilitate the movement of a wide array of molecules, impacting both the host and the microbial community. SUMMARY: This communication explores the significance of transportomes in gut bacteria, focusing on their role in nutrient acquisition, competitive interactions among microbes, and potential pathogenicity. It delves into the transportomes of key gut bacterial species like E. coli, Salmonella, Bacteroides, Lactobacillus, Clostridia, and Bifidobacterium, examining the functions of predicted transport proteins. The overview synthesizes recent research efforts, highlighting how these transportomes influence host-microbe interactions and contribute to the microbial ecology of the gut. KEY MESSAGES: Transportomes are vital for the survival and adaptation of bacteria in the gut, enabling the import and export of various nutrients and molecules. The complex interplay of transport proteins not only supports bacterial growth and competition but also has implications for host health, potentially contributing to pathogenic processes. Understanding the pathogenic potential of transportomes in major gut bacterial species provides insights into gut health and disease, offering avenues for future research and therapeutic strategies.


Assuntos
Bactérias , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos , Bactérias/metabolismo , Bactérias/patogenicidade , Animais , Transporte Biológico , Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Proteínas de Transporte/metabolismo , Trato Gastrointestinal/microbiologia
16.
Front Cardiovasc Med ; 11: 1380906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689862

RESUMO

Background: Hypertension (HTN) presents a significant global public health challenge with diverse causative factors. The accumulation of visceral adipose tissue (VAT) due to a high-fat diet (HFD) is an independent risk factor for HTN. While various studies have explored pathogenic mechanisms, a comprehensive understanding of impact of VAT on blood pressure necessitates bioinformatics analysis. Methods: Datasets GSE214618 and GSE188336 were acquired from the Gene Expression Omnibus and analyzed to identify shared differentially expressed genes between HFD-VAT and HTN-VAT. Gene Ontology enrichment and protein-protein interaction analyses were conducted, leading to the identification of hub genes. We performed molecular validation of hub genes using RT-qPCR, Western-blotting and immunofluorescence staining. Furthermore, immune infiltration analysis using CIBERSORTx was performed. Results: This study indicated that the predominant characteristic of VAT in HTN was related to energy metabolism. The red functional module was enriched in pathways associated with mitochondrial oxidative respiration and ATP metabolism processes. Spp1, Postn, and Gpnmb in VAT were identified as hub genes on the pathogenic mechanism of HTN. Proteins encoded by these hub genes were closely associated with the target organs-specifically, the resistance artery, aorta, and heart tissue. After treatment with empagliflozin, there was a tendency for Spp1, Postn, and Gpnmb to decrease in VAT. Immune infiltration analysis confirmed that inflammation and immune response may not be the main mechanisms by which visceral adiposity contributes to HTN. Conclusions: Our study pinpointed the crucial causative factor of HTN in VAT following HFD. Spp1, Postn, and Gpnmb in VAT acted as hub genes that promote elevated blood pressure and can be targets for HTN treatment. These findings contributed to therapeutic strategies and prognostic markers for HTN.

17.
Emerg Infect Dis ; 19(3): 379-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23622255

RESUMO

Pathogenic fungi have substantial effects on global biodiversity, and 2 emerging pathogenic species-the chytridiomycete Batrachochytrium dendrobatidis, which causes chytridiomycosis in amphibians, and the ascomycete Geomyces destructans, which causes white-nose syndrome in hibernating bats-are implicated in the widespread decline of their vertebrate hosts. We synthesized current knowledge for chytridiomycosis and white-nose syndrome regarding disease emergence, environmental reservoirs, life history characteristics of the host, and host-pathogen interactions. We found striking similarities between these aspects of chytridiomycosis and white-nose syndrome, and the research that we review and propose should help guide management of future emerging fungal diseases.


Assuntos
Anfíbios/microbiologia , Ascomicetos/fisiologia , Quirópteros/microbiologia , Quitridiomicetos/fisiologia , Doenças Transmissíveis Emergentes/veterinária , Micoses/veterinária , Animais , Doenças Transmissíveis Emergentes/mortalidade , Reservatórios de Doenças , Interações Hospedeiro-Patógeno , Micoses/mortalidade
18.
Biology (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979167

RESUMO

Didymella arachidicola is one of the most important fungal pathogens, causing foliar disease and leading to severe yield losses of peanuts (Arachis hypogaea L.) in China. Two main lesion phenotypes of peanut web blotch have been identified as reticulation type (R type) and blotch type (B type). As no satisfactory reference genome is available, the genomic variations and pathogenicity factors of D. arachidicola remain to be revealed. In the present study, we collected 41 D. arachidicola isolates from 26 geographic locations across China (33 for R type and 8 for B type). The chromosome-scale genome of the most virulent isolate (YY187) was assembled as a reference using PacBio and Hi-C technologies. In addition, we re-sequenced 40 isolates from different sampling sites. Genome-wide alignments showed high similarity among the genomic sequences from the 40 isolates, with an average mapping rate of 97.38%. An average of 3242 SNPs and 315 InDels were identified in the genomic variation analysis, which revealed an intraspecific polymorphism in D. arachidicola. The comparative analysis of the most and least virulent isolates generated an integrated gene set containing 512 differential genes. Moreover, 225 genes individually or simultaneously harbored hits in CAZy-base, PHI-base, DFVF, etc. Compared with the R type reference, the differential gene sets from all B type isolates identified 13 shared genes potentially related to lesion phenotype. Our results reveal the intraspecific genomic variation of D. arachidicola isolates and pathogenicity factors potentially related to different lesion phenotypes. This work sets a genomic foundation for understanding the mechanisms behind genomic diversity driving different pathogenic phenotypes of D. arachidicola.

19.
J Fungi (Basel) ; 9(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754980

RESUMO

Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal-host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways.

20.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37100053

RESUMO

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mutagênese , Mutação , Oxirredução , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA