Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 219: 114808, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327566

RESUMO

Microphysiological systems (MPSs) with three-dimensional (3D) cultured models have attracted considerable interest because of their potential to mimic human health and disease conditions. Recent MPSs have shown significant advancements in engineering perfusable vascular networks integrated with 3D culture models, realizing a more physiological environment in vitro; however, a sensing system that can monitor their activity under biomimetic vascular flow is lacking. We designed an open-top microfluidic device with sensor capabilities and demonstrated its application in analyzing oxygen metabolism in vascularized 3D tissue models. We first validated the platform by using human lung fibroblast (hLF) spheroids. Then, we applied the platform to a patient-derived cancer organoid and evaluated the changes in oxygen metabolism during drug administration through the vascular network. We found that the platform could integrate a perfusable vascular network with 3D cultured cells, and the electrochemical sensor could detect the change in oxygen metabolism in a quantitative, non-invasive, and real-time manner. This platform would become a monitoring system for 3D cultured cells integrated with a perfusable vascular network.

2.
J Adv Res ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977260

RESUMO

INTRODUCTION: Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator mediating adaptive responses to hypoxia. It is up-regulated in the tumor microenvironment and recognized as an effective anticancer drug target. Previously, we discovered that the natural compound moracin-O and its synthetic derivative MO-460 inhibited HIF-1α via hnRNPA2B1. OBJECTIVES: This study aimed to develop novel HIF-1 inhibitors for cancer chemotherapy by harnessing the potential of the natural products moracins-O and P. METHODS: In an ongoing search for novel HIF-1 inhibitors, a series of nature-inspired benzofurans with modifications on the chiral rings of moracins-O and P were synthesized. They showed improved chemical tractability and were evaluated for their inhibitory activity on HIF-1α accumulation under hypoxic conditions in HeLa CCL2 cells. The most potent derivative's chemical-based toxicities, binding affinities, and in vivo anti-tumorigenic effects were evaluated. Further, we examined whether our compound, MO-2097, exhibited anticancer effects in three-dimensional cultured organoids. RESULTS: Herein, we identified a novel synthetic chiral-free compound, MO-2097, with reduced structural complexity and increased efficiency. MO-2097 exhibited inhibitory effects on hypoxia-induced HIF-1α accumulation in HeLa CCL2 cells via inhibition of hnRNPA2B1 protein, whose binding affinities were confirmed by isothermal titration calorimetry analysis. In addition, MO-2097 demonstrated in vivo efficacy and biocompatibility in a BALB/c mice xenograft model. The immunohistochemistry staining of MO-2097-treated tissues showed decreased expression of HIF-1α and increased levels of apoptosis marker cleaved caspase 3, confirming in vivo efficacy. Furthermore, we confirmed that MO-2097 works effectively in cancer patient-based organoid models. CONCLUSION: MO-2097 represents a promising new generation of chemotherapeutic agents targeting HIF-1α inhibition via hnRNPA2B1, requiring further investigation.

3.
Cancers (Basel) ; 14(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35565273

RESUMO

The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA