Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 47(4): 680-694, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36524792

RESUMO

BACKGROUND: The purpose of this research is to address ongoing device shortfalls for pediatric patients by developing a novel pediatric hybrid total artificial heart (TAH). The valveless magnetically-levitated MCS device (Dragon Heart) has only two moving parts, integrates an axial and centrifugal blood pump into a single device, and will occupy a compact footprint within the chest for the pediatric patient population. METHODS: Prior work on the Dragon Heart focused on the development of pump designs to achieve hemodynamic requirements. The impeller of these pumps was shaft-driven and thus could not be integrated for testing. The presented research leverages an existing magnetically levitated axial flow pump and focuses on centrifugal pump development. Using the axial pump diameter as a geometric constraint, a shaftless, magnetically supported centrifugal pump was designed for placement circumferentially around the axial pump domain. The new design process included the computational analysis of more than 50 potential centrifugal impeller geometries. The resulting centrifugal pump designs were prototyped and tested for levitation and no-load rotation, followed by in vitro testing using a blood analog. To meet physiologic demands, target performance goals were pressure rises exceeding 90 mm Hg for flow rates of 1-5 L/min with operating speeds of less than 5000 RPM. RESULTS: Three puck-shaped, channel impellers for the centrifugal blood pump were selected based on achieving performance and space requirements for magnetic integration. A quasi-steady flow analysis revealed that the impeller rotational position led to a pulsatile component in the pressure generation. After prototyping, the centrifugal prototypes (3, 4, and 5 channeled designs) demonstrated levitation and no-load rotation. Hydraulic experiments established pressure generation capabilities beyond target requirements. The pressure-flow performance of the prototypes followed expected trends with a dependence on rotational speed. Pulsatile blood flow was observed without pump-speed modulation due to rotating channel passage frequency. CONCLUSION: The results are promising in the advancement of this pediatric TAH. The channeled impeller design creates pressure-flow curves that are decoupled from the flow rate, a benefit that could reduce the required controller inputs and improve treatment of hypertensive patients.


Assuntos
Coração Artificial , Coração Auxiliar , Criança , Humanos , Imãs , Desenho de Prótese , Fluxo Pulsátil , Magnetismo , Desenho de Equipamento
2.
Artif Organs ; 46(8): 1475-1490, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357020

RESUMO

BACKGROUND: Mechanical circulatory support (MCS) devices, such as ventricular assist devices (VADs) and total artificial hearts (TAHs), have become a vital therapeutic option in the treatment of end-stage heart failure for adult patients. Such therapeutic options continue to be limited for pediatric patients. Clinicians initially adapted or scaled existing adult devices for pediatric patients; however, these adult devices are not designed to support the anatomical structure and varying flow capacities required for this population and are generally operated "off-design," which risks complications such as hemolysis and thrombosis. Devices designed specifically for the pediatric population which seek to address these shortcomings are now emerging and gaining FDA approval. METHODS: To analyze the competitive landscape of pediatric MCS devices, we conducted a systematic literature review. Approximately 27 devices were studied in detail: 8 were established or previously approved designs, and 19 were under development (11 VADs, 5 Fontan assist devices, and 3 TAHs). RESULTS: Despite significant progress, there is still no pediatric pump technology that satisfies the unique and distinct design constraints and requirements to support pediatric patients, including the wide range of patient sizes, increased cardiovascular demand with growth, and anatomic and physiologic heterogeneity of congenital heart disease. CONCLUSIONS: Forward-thinking design solutions are required to overcome these challenges and to ensure the translation of new therapeutic MCS devices for pediatric patients.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Criança , Insuficiência Cardíaca/cirurgia , Coração Artificial/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA