Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain Behav Immun ; 119: 965-977, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750701

RESUMO

BACKGROUND: Maternal infection during pregnancy has been identified as a prenatal risk factor for the later development of psychopathology in exposed offspring. Neuroimaging data collected during childhood has suggested a link between prenatal exposure to maternal infection and child brain structure and function, potentially offering a neurobiological explanation for the emergence of psychopathology. Additionally, preclinical studies utilizing repeated measures of neuroimaging data suggest that effects of prenatal maternal infection on the offspring's brain may normalize over time (i.e., catch-up growth). However, it remains unclear whether exposure to prenatal maternal infection in humans is related to long-term differential neurodevelopmental trajectories. Hence, this study aimed to investigate the association between prenatal exposure to infections on child brain development over time using repeated measures MRI data. METHODS: We leveraged data from a population-based cohort, Generation R, in which we examined prospectively assessed self-reported infections at each trimester of pregnancy (N = 2,155). We further used three neuroimaging assessments (at mean ages 8, 10 and 14) to obtain cortical and subcortical measures of the offspring's brain morphology with MRI. Hereafter, we applied linear mixed-effects models, adjusting for several confounding factors, to estimate the association of prenatal maternal infection with child brain development over time. RESULTS: We found that prenatal exposure to infection in the third trimester was associated with a slower decrease in volumes of the pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and a faster increase in the middle temporal gyrus. In the temporal pole we observed a divergent pattern, specifically showing an increase in volume in offspring exposed to more infections compared to a decrease in volume in offspring exposed to fewer infections. We further observed associations in other frontal and temporal lobe structures after exposure to infections in any trimester, though these did not survive multiple testing correction. CONCLUSIONS: Our results suggest that prenatal exposure to infections in the third trimester may be associated with slower age-related growth in the regions: pars orbitalis, rostral anterior cingulate and superior frontal gyrus, and faster age-related growth in the middle temporal gyrus across childhood, suggesting a potential sensitive period. Our results might be interpreted as an extension of longitudinal findings from preclinical studies, indicating that children exposed to prenatal infections could exhibit catch-up growth. However, given the lack of differences in brain volume between various infection groups at baseline, there may instead be either a longitudinal deviation or a subtle temporal deviation. Subsequent well-powered studies that extend into the period of full brain development (∼25 years) are needed to confirm whether the observed phenomenon is indeed catch-up growth, a longitudinal deviation, or a subtle temporal deviation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Complicações Infecciosas na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Masculino , Adolescente , Estudos Longitudinais , Neuroimagem , Desenvolvimento Infantil , Adulto
2.
Neuroradiology ; 66(3): 437-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206352

RESUMO

PURPOSE: Nasal chondromesenchymal hamartomas (NCMH) are rare, predominantly benign tumors of the sinonasal tract. The distinction from higher grade malignancy may be challenging based on imaging features alone. To increase the awareness of this entity among radiologists, we present a multi-institutional case series of pediatric NCMH patients showing the varied imaging presentation. METHODS: Descriptive assessment of imaging appearances of the lesions on computed tomography (CT) and magnetic resonance imaging (MRI) was performed. In addition, we reviewed demographic information, clinical data, results of genetic testing, management, and follow-up data. RESULTS: Our case series consisted of 10 patients, with a median age of 0.5 months. Intraorbital and intracranial extensions were both observed in two cases. Common CT findings included bony remodeling, calcifications, and bony erosions. MRI showed heterogeneous expansile lesion with predominantly hyperintense T2 signal and heterogenous post-contrast enhancement in the majority of cases. Most lesions exhibited increased diffusivity on diffusion weighted imaging and showed signal drop-out on susceptibility weighted images in the areas of calcifications. Genetic testing was conducted in 4 patients, revealing the presence of DICER1 pathogenic variant in three cases. Surgery was performed in all cases, with one recurrence in two cases and two recurrences in one case on follow-up. CONCLUSION: NCMHs are predominantly benign tumors of the sinonasal tract, typically associated with DICER1 pathogenic variants and most commonly affecting pediatric population. They may mimic aggressive behavior on imaging; therefore, awareness of this pathology is important. MRI and CT have complementary roles in the diagnosis of this entity.


Assuntos
Hamartoma , Imageamento por Ressonância Magnética , Humanos , Criança , Recém-Nascido , Imagem de Difusão por Ressonância Magnética , Hamartoma/diagnóstico por imagem , Hamartoma/cirurgia , Tomografia Computadorizada por Raios X , Ribonuclease III , RNA Helicases DEAD-box
3.
Childs Nerv Syst ; 39(10): 2583-2592, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37380927

RESUMO

PURPOSE: To review the evolution of cross-sectional imaging in pediatric neuroradiology from early developments to current advancements and future directions. METHODS: Information was obtained through a PubMed literature search as well as referenced online resources and personal experience from radiologists currently practicing pediatric neuroimaging and those who experienced the era of nascent cross-sectional imaging. RESULTS: The advent of computed tomography (CT) and magnetic resonance imaging (MRI) in the 1970s and 1980s brought about a revolutionary shift in the field of medical imaging, neurosurgical and neurological diagnosis. These cross-sectional imaging techniques ushered in a new era by enabling the visualization of soft tissue structures within the brain and spine. Advancements in these imaging modalities have continued at a remarkable pace, now providing not only high high-resolution and 3-dimensional anatomical imaging, but also functional assessment. With each stride forward, CT and MRI have provided clinicians with invaluable insights, improving the accuracy and precision of diagnoses, facilitating the identification of optimal surgical targets, and guiding the selection of appropriate treatment strategies. CONCLUSION: This article traces the origins and early developments of CT and MRI, chronicling their journey from pioneering technologies to their current indispensable status in clinical applications and exciting possibilities that lie ahead in the realm of medical imaging and neurologic diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional
4.
Hum Brain Mapp ; 43(9): 2782-2800, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35274789

RESUMO

Scanning young children while they watch short, engaging, commercially-produced movies has emerged as a promising approach for increasing data retention and quality. Movie stimuli also evoke a richer variety of cognitive processes than traditional experiments, allowing the study of multiple aspects of brain development simultaneously. However, because these stimuli are uncontrolled, it is unclear how effectively distinct profiles of brain activity can be distinguished from the resulting data. Here we develop an approach for identifying multiple distinct subject-specific Regions of Interest (ssROIs) using fMRI data collected during movie-viewing. We focused on the test case of higher-level visual regions selective for faces, scenes, and objects. Adults (N = 13) were scanned while viewing a 5.6-min child-friendly movie, as well as a traditional localizer experiment with blocks of faces, scenes, and objects. We found that just 2.7 min of movie data could identify subject-specific face, scene, and object regions. While successful, movie-defined ssROIS still showed weaker domain selectivity than traditional ssROIs. Having validated our approach in adults, we then used the same methods on movie data collected from 3 to 12-year-old children (N = 122). Movie response timecourses in 3-year-old children's face, scene, and object regions were already significantly and specifically predicted by timecourses from the corresponding regions in adults. We also found evidence of continued developmental change, particularly in the face-selective posterior superior temporal sulcus. Taken together, our results reveal both early maturity and functional change in face, scene, and object regions, and more broadly highlight the promise of short, child-friendly movies for developmental cognitive neuroscience.


Assuntos
Mapeamento Encefálico , Filmes Cinematográficos , Retenção Psicológica , Adulto , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia
5.
Magn Reson Med ; 88(3): 1273-1281, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35553454

RESUMO

PURPOSE: Low magnetic field systems provide an important opportunity to expand MRI to new and diverse clinical and research study populations. However, a fundamental limitation of low field strength systems is the reduced SNR compared to 1.5 or 3T, necessitating compromises in spatial resolution and imaging time. Most often, images are acquired with anisotropic voxels with low through-plane resolution, which provide acceptable image quality with reasonable scan times, but can impair visualization of subtle pathology. METHODS: Here, we describe a super-resolution approach to reconstruct high-resolution isotropic T2 -weighted images from a series of low-resolution anisotropic images acquired in orthogonal orientations. Furthermore, acquiring each image with an incremented TE allows calculations of quantitative T2 images without time penalty. RESULTS: Our approach is demonstrated via phantom and in vivo human brain imaging, with simultaneous 1.5 × 1.5 × 1.5 mm3 T2 -weighted and quantitative T2 maps acquired using a clinically feasible approach that combines three acquisition that require approximately 4-min each to collect. Calculated T2 values agree with reference multiple TE measures with intraclass correlation values of 0.96 and 0.85 in phantom and in vivo measures, respectively, in line with previously reported brain T2 values at 150 mT, 1.5T, and 3T. CONCLUSION: Our multi-orientation and multi-TE approach is a time-efficient method for high-resolution T2 -weighted images for anatomical visualization with simultaneous quantitative T2 imaging for increased sensitivity to tissue microstructure and chemical composition.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
6.
Neuroimage ; 238: 118273, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146712

RESUMO

Magnetic resonance imaging (MRI) has played an increasingly relevant role in understanding infant, child, and adolescent neurodevelopment, providing new insight into developmental patterns in neurotypical development, as well as those associated with potential psychopathology, learning disorders, and other neurological conditions. In addition, studies have shown the impact of a child's physical and psychosocial environment on developing brain structure and function. A rate-limiting complication in these studies, however, is the high cost and infrastructural requirements of modern MRI systems. High costs mean many neuroimaging studies typically include fewer than 100 individuals and are performed predominately in high resource hospitals and university settings within high income countries (HICs). As a result, our knowledge of brain development, particularly in children who live in lower and middle income countries (LMICs) is relatively limited. Low field systems, with magnetic fields less than 100mT offer the promise of lower scanning costs and wide-spread global adoption, but routine low field pediatric neuroimaging has yet to be demonstrated. Here we present the first pediatric MRI data collected on a low cost and assessable 64mT scanner in children 6 weeks to 16 years of age and replicate brain volumes estimates and developmental trajectories derived from 3T MRI data. While preliminary, these results illustrate the potential of low field imaging as a viable complement to more conventional high field imaging systems, and one that may further enhance our knowledge of neurodevelopment in LMICs where malnutrition, psychosocial adversities, and other environmental exposures may profoundly affect brain maturation.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/métodos , Adolescente , Criança , Humanos , Pediatria
7.
Magn Reson Med ; 85(6): 3169-3181, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404086

RESUMO

PURPOSE: To investigate the ability of free induction decay navigator (FIDnav)-based motion monitoring to predict diagnostic utility and reduce the time and cost associated with acquiring diagnostically useful images in a pediatric patient cohort. METHODS: A study was carried out in 102 pediatric patients (aged 0-18 years) at 3T using a 32-channel head coil array. Subjects were scanned with an FID-navigated MPRAGE sequence and images were graded by two radiologists using a five-point scale to evaluate the impact of motion artifacts on diagnostic image quality. The correlation between image quality and four integrated FIDnav motion metrics was investigated, as well as the sensitivity and specificity of each FIDnav-based metric to detect different levels of motion corruption in the images. Potential time and cost savings were also assessed by retrospectively applying an optimal detection threshold to FIDnav motion scores. RESULTS: A total of 12% of images were rated as non-diagnostic, while a further 12% had compromised diagnostic value due to motion artifacts. FID-navigated metrics exhibited a moderately strong correlation with image grade (Spearman's rho ≥ 0.56). Integrating the cross-correlation between FIDnav signal vectors achieved the highest sensitivity and specificity for detecting non-diagnostic images, yielding total time savings of 7% across all scans. This corresponded to a financial benefit of $2080 in this study. CONCLUSIONS: Our results indicate that integrated motion metrics from FIDnavs embedded in structural MRI are a useful predictor of diagnostic image quality, which translates to substantial time and cost savings when applied to pediatric MRI examinations.


Assuntos
Algoritmos , Benchmarking , Adolescente , Artefatos , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Movimento (Física) , Estudos Retrospectivos
8.
Hum Brain Mapp ; 41(10): 2827-2845, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32166830

RESUMO

Developmental dyslexia affects 40-60% of children with a familial risk (FHD+) compared to a general prevalence of 5-10%. Despite the increased risk, about half of FHD+ children develop typical reading abilities (FHD+Typical). Yet the underlying neural characteristics of favorable reading outcomes in at-risk children remain unknown. Utilizing a retrospective, longitudinal approach, this study examined whether putative protective neural mechanisms can be observed in FHD+Typical at the prereading stage. Functional and structural brain characteristics were examined in 47 FHD+ prereaders who subsequently developed typical (n = 35) or impaired (n = 12) reading abilities and 34 controls (FHD-Typical). Searchlight-based multivariate pattern analyses identified distinct activation patterns during phonological processing between FHD+Typical and FHD-Typical in right inferior frontal gyrus (RIFG) and left temporo-parietal cortex (LTPC) regions. Follow-up analyses on group-specific classification patterns demonstrated LTPC hypoactivation in FHD+Typical compared to FHD-Typical, suggesting this neural characteristic as an FHD+ phenotype. In contrast, RIFG showed hyperactivation in FHD+Typical than FHD-Typical, and its activation pattern was positively correlated with subsequent reading abilities in FHD+ but not controls (FHD-Typical). RIFG hyperactivation in FHD+Typical was further associated with increased interhemispheric functional and structural connectivity. These results suggest that some protective neural mechanisms are already established in FHD+Typical prereaders supporting their typical reading development.


Assuntos
Encéfalo , Desenvolvimento Infantil/fisiologia , Conectoma , Imagem de Tensor de Difusão , Dislexia , Leitura , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Dislexia/diagnóstico por imagem , Dislexia/patologia , Dislexia/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Desenvolvimento da Linguagem , Estudos Longitudinais , Masculino , Estudos Retrospectivos
9.
Neuroimage ; 185: 793-801, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29684645

RESUMO

Pediatric neuroimaging is challenging due the rapid structural, metabolic, and functional changes that occur in the developing brain. A specially trained team is needed to produce high quality diagnostic images in children, due to their small physical size and immaturity. Patient motion, cooperation and medical condition dictate the methods and equipment used. A customized approach tailored to each child's age and functional status with the appropriate combination of dedicated staff, imaging hardware, and software is key; these range from low-tech techniques, such as feed and swaddle, to specialized small bore MRI scanners, MRI compatible incubators and neonatal head coils. New pre-and post-processing techniques can also compensate for the motion artifacts and low signal that often degrade neonatal scans.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Neuroimagem/métodos , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
10.
Pediatr Blood Cancer ; 66(6): e27680, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848081

RESUMO

Preoperative diagnosis for tumors arising in the optic chiasm/sellar/suprasellar region in children is helpful to determine surgical necessity and approach, given the high operative risk in this area. We evaluated the ability to differentiate tumor type by preoperative neuroimaging. Thirty-eight of 53 tumors were correctly diagnosed by neuroimaging based on final pathologic diagnosis (prediction accuracy 72%). Prediction accuracies were 87% (20/23) for craniopharyngioma, 79% (11/14) for optic pathway glioma, 64% (7/11) for germ cell tumor, and 0% (0/5) for Langerhans cell histiocytosis. Diagnosis of optic chiasm/sellar/suprasellar tumors in children by imaging alone should be considered when biopsy is considered high risk.


Assuntos
Neoplasias Encefálicas/diagnóstico , Craniofaringioma/diagnóstico , Neuroimagem/métodos , Quiasma Óptico/patologia , Neoplasias do Nervo Óptico/diagnóstico , Neoplasias Hipofisárias/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Craniofaringioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Quiasma Óptico/diagnóstico por imagem , Neoplasias do Nervo Óptico/diagnóstico por imagem , Neoplasias Hipofisárias/diagnóstico por imagem , Prognóstico , Tomografia Computadorizada por Raios X/métodos
11.
Hum Brain Mapp ; 39(3): 1218-1231, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29206318

RESUMO

Motion-related artifacts are one of the major challenges associated with pediatric neuroimaging. Recent studies have shown a relationship between visual quality ratings of T1 images and cortical reconstruction measures. Automated algorithms offer more precision in quantifying movement-related artifacts compared to visual inspection. Thus, the goal of this study was to test three different automated quality assessment algorithms for structural MRI scans. The three algorithms included a Fourier-, integral-, and a gradient-based approach which were run on raw T1 -weighted imaging data collected from four different scanners. The four cohorts included a total of 6,662 MRI scans from two waves of the Generation R Study, the NIH NHGRI Study, and the GUSTO Study. Using receiver operating characteristics with visually inspected quality ratings of the T1 images, the area under the curve (AUC) for the gradient algorithm, which performed better than either the integral or Fourier approaches, was 0.95, 0.88, and 0.82 for the Generation R, NHGRI, and GUSTO studies, respectively. For scans of poor initial quality, repeating the scan often resulted in a better quality second image. Finally, we found that even minor differences in automated quality measurements were associated with FreeSurfer derived measures of cortical thickness and surface area, even in scans that were rated as good quality. Our findings suggest that the inclusion of automated quality assessment measures can augment visual inspection and may find use as a covariate in analyses or to identify thresholds to exclude poor quality data.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Reconhecimento Automatizado de Padrão , Garantia da Qualidade dos Cuidados de Saúde/métodos , Algoritmos , Área Sob a Curva , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Movimento (Física) , Tamanho do Órgão , Reconhecimento Automatizado de Padrão/métodos , Curva ROC
12.
Neuroimage ; 132: 406-416, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26931814

RESUMO

Phonological processing ability is a key factor in reading acquisition, predicting its later success or causing reading problems when it is weakened. Our aim here was to establish the neural correlates of auditory word rhyming (a standard phonological measure) in 102 young children with (FHD+) and without familial history of dyslexia (FHD-) in a shallow orthography (i.e. Polish). Secondly, in order to gain a deeper understanding on how schooling shapes brain activity to phonological awareness, a comparison was made of children who had had formal literacy instruction for several months (in first grade) and those who had not yet had any formal instruction in literacy (in kindergarten). FHD+ children compared to FHD- children in the first grade scored lower in an early print task and showed longer reaction times in the in-scanner rhyme task. No behavioral differences between FHD+ and FHD- were found in the kindergarten group. On the neuronal level, overall familial risk was associated with reduced activation in the bilateral temporal, tempo-parietal and inferior temporal-occipital regions, as well as the bilateral inferior and middle frontal gyri. Subcortically, hypoactivation was found in the bilateral thalami, caudate, and right putamen in FHD+. A main effect of the children's grade was present only in the left inferior frontal gyrus, where reduced activation for rhyming was shown in first-graders. Several regions in the ventral occipital cortex, including the fusiform gyrus, and in the right middle frontal and postcentral gyri, displayed an interaction between familial risk and grade. The present results show strong influence of familial risk that may actually increase with formal literacy instruction.


Assuntos
Encéfalo/fisiologia , Dislexia/genética , Predisposição Genética para Doença , Fonética , Leitura , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudantes
13.
Cereb Cortex ; 24(9): 2489-501, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23599167

RESUMO

Developmental dyslexia (DD) is a learning disability affecting 5-17% of children. Although researchers agree that DD is characterized by deficient phonological processing (PP), its cause is debated. It has been suggested that altered rapid auditory processing (RAP) may lead to deficient PP in DD and studies have shown deficient RAP in individuals with DD. Functional neuroimaging (fMRI) studies have implicated hypoactivations in left prefrontal brain regions during RAP in individuals with DD. When and how these neuronal alterations evolve remains unknown. In this article, we investigate functional networks during RAP in 28 children with (n = 14) and without (n = 14) a familial risk for DD before reading onset (mean: 5.6 years). Results reveal functional alterations in left-hemispheric prefrontal regions during RAP in prereading children at risk for DD, similar to findings in individuals with DD. Furthermore, activation during RAP in left prefrontal regions positively correlates with prereading measures of PP and with neuronal activation during PP in posterior dorsal and ventral brain areas. Our results suggest that neuronal differences during RAP predate reading instruction and thus are not due to experience-dependent brain changes resulting from DD itself and that there is a functional relationship between neuronal networks for RAP and PP within the prereading brain.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiopatologia , Dislexia/fisiopatologia , Estimulação Acústica , Mapeamento Encefálico , Pré-Escolar , Dislexia/genética , Família , Feminino , Predisposição Genética para Doença , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fonética , Discriminação da Altura Tonal/fisiologia , Risco
14.
J Magn Reson Imaging ; 39(5): 1104-17, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24115454

RESUMO

PURPOSE: To compare a double-excitation combined arterial-spin labeling/blood-oxygenation level dependent (ASL/BOLD) functional imaging method to a double-echo method. ASL provides a useful complement to standard BOLD functional imaging, to map effects of cerebral hemodynamics. Whole-brain imaging is necessary to properly characterize large functional networks. A challenge of whole-brain ASL/BOLD is that images for ASL functional contrast must be acquired before significant longitudinal relaxation of the inverted spins occurs; however, a longer echo time (TE) is required for optimal BOLD functional contrast, lengthening the acquisition time. Thus, existing combined ASL/BOLD studies have only partial-brain coverage. MATERIALS AND METHODS: The proposed method allows acquisition of images for ASL contrast within a short period after the ASL labeling pulse and postinversion delay, then subsequent acquisition of images with longer TE for BOLD contrast. The technique is demonstrated using a narrative comprehension task in 35 normal children, and the double-excitation method is empirically compared with the double-echo method in 7 normal adults. RESULTS: Compared with a double-echo sequence, simulations show the double-excitation method improves ASL contrast-to-noise ratio (CNR) (∼50%) in later-acquired slices with minimal (<1%) reduction in BOLD CNR in earlier-acquired slices if reduced excitation flip angles for the ASL acquisitions are used. Empirical results from adult data are in agreement with the simulations. Group analyses from the narrative comprehension task also show greater intersubject sensitivity in BOLD versus ASL. CONCLUSION: Our method simultaneously optimizes ASL and BOLD acquisitions for CNR while economizing acquisition time.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Compreensão/fisiologia , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Oximetria/métodos , Adolescente , Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Testes de Linguagem , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
15.
Front Neurol ; 15: 1339223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585353

RESUMO

Background: Portable low-field-strength magnetic resonance imaging (MRI) systems represent a promising alternative to traditional high-field-strength systems with the potential to make MR technology available at scale in low-resource settings. However, lower image quality and resolution may limit the research and clinical potential of these devices. We tested two super-resolution methods to enhance image quality in a low-field MR system and compared their correspondence with images acquired from a high-field system in a sample of young people. Methods: T1- and T2-weighted structural MR images were obtained from a low-field (64mT) Hyperfine and high-field (3T) Siemens system in N = 70 individuals (mean age = 20.39 years, range 9-26 years). We tested two super-resolution approaches to improve image correspondence between images acquired at high- and low-field: (1) processing via a convolutional neural network ('SynthSR'), and (2) multi-orientation image averaging. We extracted brain region volumes, cortical thickness, and cortical surface area estimates. We used Pearson correlations to test the correspondence between these measures, and Steiger Z tests to compare the difference in correspondence between standard imaging and super-resolution approaches. Results: Single pairs of T1- and T2-weighted images acquired at low field showed high correspondence to high-field-strength images for estimates of total intracranial volume, surface area cortical volume, subcortical volume, and total brain volume (r range = 0.60-0.88). Correspondence was lower for cerebral white matter volume (r = 0.32, p = 0.007, q = 0.009) and non-significant for mean cortical thickness (r = -0.05, p = 0.664, q = 0.664). Processing images with SynthSR yielded significant improvements in correspondence for total brain volume, white matter volume, total surface area, subcortical volume, cortical volume, and total intracranial volume (r range = 0.85-0.97), with the exception of global mean cortical thickness (r = 0.14). An alternative multi-orientation image averaging approach improved correspondence for cerebral white matter and total brain volume. Processing with SynthSR also significantly improved correspondence across widespread regions for estimates of cortical volume, surface area and subcortical volume, as well as within isolated prefrontal and temporal regions for estimates of cortical thickness. Conclusion: Applying super-resolution approaches to low-field imaging improves regional brain volume and surface area accuracy in young people. Finer-scale brain measurements, such as cortical thickness, remain challenging with the limited resolution of low-field systems.

16.
Cureus ; 16(5): e59991, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854234

RESUMO

INTRODUCTION: Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS:  We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS: From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION: This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38344118

RESUMO

Diffusion MRI (dMRI) is a widely used method to investigate the microstructure of the brain. Quality control (QC) of dMRI data is an important processing step that is performed prior to analysis using models such as diffusion tensor imaging (DTI) or neurite orientation dispersion and density imaging (NODDI). When processing dMRI data from infants and young children, where intra-scan motion is common, the identification and removal of motion artifacts is of the utmost importance. Manual QC of dMRI data is (1) time-consuming due to the large number of diffusion directions, (2) expensive, and (3) prone to subjective errors and observer variability. Prior techniques for automated dMRI QC have mostly been limited to adults or school-age children. Here, we propose a deep learning-based motion artifact detection tool for dMRI data acquired from infants and toddlers. The proposed framework uses a simple three-dimensional convolutional neural network (3DCNN) trained and tested on an early pediatric dataset of 2,276 dMRI volumes from 121 exams acquired at 1 month and 24 months of age. An average classification accuracy of 95% was achieved following four-fold cross-validation. A second dataset with different acquisition parameters and ages ranging from 2-36 months (consisting of 2,349 dMRI volumes from 26 exams) was used to test network generalizability, achieving 98% classification accuracy. Finally, to demonstrate the importance of motion artifact volume removal in a dMRI processing pipeline, the dMRI data were fit to the DTI and NODDI models and the parameter maps were compared with and without motion artifact removal.

18.
Magn Reson Med Sci ; 22(1): 27-43, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321984

RESUMO

Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are techniques used to evaluate brain perfusion using MRI. DSC requires dynamic image acquisition with a rapid administration of gadolinium-based contrast agent. In contrast, ASL obtains brain perfusion information using magnetically labeled blood water as an endogenous tracer. For the evaluation of brain perfusion in pediatric neurological diseases, ASL has a significant advantage compared to DSC, CT, and single-photon emission CT/positron emission tomography because of the lack of radiation exposure and contrast agent administration. However, in ASL, optimization of several parameters, including the type of labeling, image acquisition, background suppression, and postlabeling delay, is required, because they have a significant effect on the quantification of cerebral blood flow (CBF).In this article, we first review recent technical developments of ASL and age-dependent physiological characteristics in pediatric brain perfusion. We then review the clinical implementation of ASL in pediatric neurological diseases, including vascular diseases, brain tumors, acute encephalopathy with biphasic seizure and late reduced diffusion (AESD), and migraine. In moyamoya disease, ASL can be used for brain perfusion and vessel assessment in pre- and post-treatment. In arteriovenous malformations, ASL is sensitive to detect small degrees of shunt. Furthermore, in vascular diseases, the implementation of ASL-based time-resolved MR angiography is described. In neoplasms, ASL-derived CBF has a high diagnostic accuracy for differentiation between low- and high-grade pediatric brain tumors. In AESD and migraine, ASL may allow for accurate early diagnosis and provide pathophysiological information.


Assuntos
Neoplasias Encefálicas , Transtornos de Enxaqueca , Doença de Moyamoya , Doenças Vasculares , Humanos , Criança , Meios de Contraste , Marcadores de Spin , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico , Circulação Cerebrovascular , Angiografia por Ressonância Magnética/métodos
19.
Neuroimage Clin ; 39: 103486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37634376

RESUMO

Diffusion-Weight Imaging (DWI) is increasingly used to explore a range of outcomes in pediatric concussion, particularly the neurobiological underpinnings of symptom recovery. However, the DWI findings within the broader pediatric concussion literature are mixed, which can largely be explained by methodological heterogeneity. To address some of these limitations, the aim of the present study was to utilize internationally- recognized criteria for concussion and a consistent imaging timepoint to conduct a comprehensive, multi-parametric survey of white matter microstructure after concussion. Forty-three children presenting with concussion to the emergency department of a tertiary level pediatric hospital underwent neuroimaging and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury.We combined multiple DWI metrics across four modeling approaches using Linked Independent Component Analysis (LICA) to extract several independent patterns of covariation in tissue microstructure present in the study cohort. Our analysis did not identify significant differences between the symptomatic and asymptomatic groups and no component significantly predicted delayed recovery. If white matter microstructure changes are implicated in delayed recovery from concussion, these findings, alongside previous work, suggest that current diffusion techniques are insufficient to detect those changes at this time.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Substância Branca , Humanos , Criança , Substância Branca/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Síndrome Pós-Concussão/diagnóstico por imagem , Difusão , Neuroimagem
20.
Cureus ; 14(12): e32117, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601140

RESUMO

Congenital defects in the tentorium cerebelli are quite rare occurrences and are often too small and asymptomatic. This is a case report of a female patient aged 11 years, complaining of headache, vertigo, and vomiting. Her computed tomography (CT) images show transtentorial herniation of occipital gyri across a developmental defect involving the anterior free margin of the tentorium cerebelli. Similar cases have been reported in the past as "incidental" and "potentially symptomatic" findings, and in at least one case as a proven pathological findings. Our case is unique in terms of the asymmetric bilateral configuration and comparatively larger size of the defect. We have included a review of the existing medical literature in order to derive learning points for the betterment of our understanding of a rare entity that can have significant implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA